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1 Section 1. Categories and functors

1.1 Problem 1

Let f be a morphism in a category C. Prove the following:

1. If f is an isomorphism then f is a monomorphism and an epimorphism.

2. The inclusion of Z in Q is a monomorphism and an epimorphism in the category
of rings but not an isomorphism

Part (1). f ∈ HomC(A,B) is a isomorphism iff ∃g ∈ HomC(B,A) such that f ◦ g = IdB and
g ◦ f = IdA. Hence,

f ◦ h = f ◦ h′ =⇒ g ◦ f ◦ h = g ◦ f ◦ h′ =⇒ h = h′

so f is a monomorphism. Equivalently over the left side, one can see f is an epimorphism.

Part (2). i : Z 7→ Q is a monomorphism as it acts as the identity to the elements of Z. If there are
two ring morphism f, g : A 7→ Z for which i(f(a)) = i(g(a))∀a ∈ A, then f(a) = g(a)∀a ∈ A, so i is
mono.
It’s also an epimorphism as, for any two ring morphisms h, h′ : Q 7→ C

h ◦ i = h′ ◦ i =⇒ h(n) = h′(n) with n ∈ Z
=⇒ h(q) = h(a/b) = h(a)/h(b) = h′(a)/h′(b) = h′(a/b) = h′(q) for all q ∈ Q

Last, it is not a isomorphism of rings as if it were, there would exist an inverse g : Q 7→ Z morphism
of rings. This is not possible as 1 = g(2 · 1/2) = 2 · g(1/2), which would imply 2 | 1.

1.2 Problem 2

Show that in the category of finite dimensional vector spaces over a field K we have a
natural equivalence of functors between the identity Id and the bidual (−)∗∗.

Restating the equivalence of functors in the terms of K-vector spaces, we need to prove that

1. There is an isomorphism, τV : V 7→ V ∗∗ for all V a finite dimensional vector spaces.

(proof) We define a linear map τV : V 7→ V ∗∗ that, given a vector u, returns τV (u) := ϕu, a
linear form ϕu : V ∗ 7→ R such that ϕu(w) = w(u). It is injective as if ϕu(w) = w(u) = 0 for all
forms w =⇒ u = 0. From the dual basis theorem, we know the dimV = dimV ∗ = dimV ∗∗,
so injective =⇒ isomorphism.
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2. The bidual map of f : V 7→ W , which is f∗∗ : V ∗∗ 7→ W ∗∗, obeys the following commutative
property f∗∗ ≡ τW ◦ f ◦ τ−1V

(proof) Equivalently, we will see f∗∗ ◦ τV = τW ◦ f ⇐⇒ ∀v ∈ V f∗∗(ϕv) = ϕf(v) ⇐⇒ ∀w ∈
W ∗ f∗∗(ϕv)(w) = w(f(v)), which exactly the definition of the bidual map.

1.3 Problem 3

Show that two categories B and C are naturally equivalents if and only if there exists a
fully faithful and essentially surjective covariant functor F : B → C.

=⇒ A, B are natural equivalents =⇒ ∃F : A 7→ B fully faithful and dense.
By the natural equivalence of categories, there exist two functors F : A 7→ B and G : B 7→ A such
that F ◦G ≃ IdB and G ◦ F ≃ IdA. This means that for all objects S, T ∈ A and f ∈ HomA(S, T )
there are isomorphisms τS , τT such that τT ◦ (G ◦ F )(f) ◦ τ−1S = f . And for all objects C,D ∈ B
and g ∈ HomB(C,D) there are isomorphisms πC , πD such that πD ◦ (F ◦G)(g) ◦ π−1S = g. We will
see that F is fully faithful and dense.

1. Faithful. Suppose F (f) = F (f ′) =⇒ G◦F (f) = G◦F (f ′) =⇒ τT ◦f ◦τ−1S = τT ◦f ′◦τ−1S =⇒
f = f ′. Note that equivalently G is faithfull, which we will use in the proof of F full.

2. Dense. For all C ∈ ob(B), take S = G(C). Then F (S) = F ◦G(C) which is isomorphic to C
by πC .

3. Full. Given S, T ∈ obj(A). For all g ∈ HomB(F (S), F (T )) there is an f ∈ HomA(S, T ) such
that F (f) = g. Let f = τ−1T ◦G(g) ◦ τS . Then

F (f) = F (τ−1T ) ◦ (F ◦G)(g) ◦ F (τS)

Now we will use that G is faithful and prove (G ◦ F )(f) = G(g) which will imply F (f) = g.

(G ◦ F )(f) = (G ◦ F )(τ−1T ) ◦ (G ◦ F ◦G)(g) ◦ (G ◦ F )(τS)

By the naturallity of the choice of morphisms τ , (G ◦ F )(τT ) = τG◦F (T ) and because functors
preserve inverses,

(G ◦ F )(f) = τ−1G◦F (T ) ◦ (G ◦ F )(G(f)) ◦ τG◦F (S) = G(f)

which concludes the proof.

⇐= ∃F : A 7→ B fully faithful and dense =⇒ A, B are natural equivalents
We construct the inverse functor G : B 7→ A such that ∀C ∈ ob(B), G(C) = S, the object such that
F (S) ≃ C which is ensured by F being Dense. We note the isomorphism between C ≃ F (G(C)),
πC . Then, for all g : C 7→ D, we take G(g) = F−1(πD ◦ g ◦ π−1C ), which exists and is unique as
F is a bijection between HomA(S, T ) 7→ HomB(F (S), F (T )) (F is Fully Faithful). This defines G
completely.
To see that G is a functor, we need

1. Identity goes to identity. G(idC) = F−1(πC ◦ idC ◦ π−1C ) = F−1(id) = id. In the last equality
we have used that F is a functor so it sends identities to identities (and the inverse on the
morphisms is unique).
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2. Composition is mantained. G(f ◦g) = F−1(πS ◦f ◦g◦π−1R ) = F−1(πS ◦f ◦π−1T ◦πT ◦g◦π
−1
R ) =

F−1(πS ◦ f ◦ π−1T ) ◦ F−1(πT ◦ g ◦ π−1R ) = G(f) ◦G(g).

The equivalence of functors between G ◦ F ≃ IdB and F ◦ B ≃ IdA is direct by construction.
The isomorphisms τS in category A and πC in category B are the ones ensured by F dense. The
commutative property (G ◦ F )(f) = τ−1T ◦ f ◦ τS is given by construction.

1.4 Problem 4

Pullbacks in the category of abelian groups: Let A and B be abelian groups together
with homomorphisms f : A → S and g : B → S. Prove that ASB = {(a, b) ∈ AB|f(a) =
g(b)}.

Translating the universal property to the category of Abelian groups, we need to check

1. A ×S B is an Abelian group. That πA and πB, the projection onto the first and second
coordinate, are group morphisms.

(proof) The restriction is closed under product and inverse, as f, g are group homomorphisms.
Product (a, b), (c, d) ∈ A ×S B, f(ac) = f(a)f(c) = g(b)g(d) = g(bd). Inverse f(a−1) =
f(a)−1 = g(b)−1 = g(b−1). Hence A ×S B ⊂ A × B, which is abelian. πA and πB are clearly
morphisms by the universal property of the product and because A×S B is a subgroup of the
product.

2. ∃s : A×S B 7→ S such that s = f ◦ πA = g ◦ πB
(proof) s((a, b)) := f(a) = g(b), which is well defined, morphism and satisfies the condition as
(a, b) ∈ A×S B.

3. For all Abelian group C and morphisms hA : C 7→ A, hB : C 7→ B such that hA ◦ f = hb ◦ g,
there exists a unique ϕ : C 7→ A×S B such that πA ◦ ϕ = hA and πB ◦ ϕ = hB.

(proof) Define ϕ : C 7→ A×S B as ϕ(c) := (hA(c), hB(c)). It is well defined as f ◦hA = g ◦hB,
so it actually maps to A ×S B ⊂ A × B. It obviously satisfies the commutative property by
construction. It is unique as πA ◦ϕ = hA implies that the first component of ϕ must be hA and
idem for the second and B. We are implicitly using the universal property of products, any
group homomorphism to the product can be split uniquely into component homomorphisms
and viceversa.

1.5 Problem 5

Pushouts in the category of abelian groups: Let A and B be abelian groups together
with homomorphisms f : S → A and g : S → B. Prove that:

A ⊔S B =
A⊕B

W

where W is the subgroup generated by (f(s),−g(s)) with s ∈ S.

Translating the universal property to the category of Abelian groups, we need to check

1. A ⊔S B is an Abelian group. Let λA : A 7→ A ⊔S B such that λ(a) = (a, 0) and idem for λB.
They are the natural quotient maps.

(proof) Direct sum and quotient by a subgroup W conserve commutativity.
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2. ∃z : S 7→ A ⊔S B such that z(s) = λA ◦ f = λB ◦ g
(proof) λA ◦ f(s) = (f(s), 0) = (f(s), 0) + (−f(s), g(s)) = (0, g(s)) = λB ◦ g(s)

3. For all Abelian group C and morphisms hA : A 7→ C, hB : B 7→ C such that hA ◦ f = hB ◦ g
there exists a unique ϕ : A ⊔S B 7→ C such that ϕ ◦ λA = hA and ϕ ◦ λB = hB.

(proof) Define ϕ : A⊔SB 7→ C as ϕ((a, b)) = hA(a)+hB(b). It is well defined as if (a, b)−(c, d) ∈
W =⇒ (a − c, b − d) =

∑
(f(si),−g(si)) = (f(s),−g(s)). Hence, hA(a − c) + hB(b − d) =

hA(f(s)) − hB(g(s)) = 0. Hence, its a morphism. Suppose it is not unique ∃ϕ, ϕ′ with the
universal property. Then (ϕ−ϕ′)◦λA = 0 = (ϕ−ϕ′)◦λB =⇒ (ϕ−ϕ′)((a, b)) = 0 =⇒ ϕ ≡ ϕ′.

1.6 Problem 6

Inverse limits in the category of sets / groups / abelian groups / modules: Let ({Ai}, {fj , i})
be an inverse system over a preordered set I. Prove that

lim
←−

Ai = {(ai) ∈
∏

Ai|fj,i(aj) = ai, i ≤ j}

Again, translating the universal property to the categories that matter to this problem, we need to
check.

1. lim←−Ai a is set / group / abelian groups / modules. That the πj : lim←−Ai 7→ Aj , the natural
projections from the product, are morphisms and πi = fj,i ◦ πj∀i, j i ≤ j.

(proof) All these categories accept products and our inverse limit is a product with some
additional constraints. Because the additional constraints are morphisms, they are closed
with respect operations, so the final product will be a set / group / abelian group / module.
By the universal property of the product and because the extra restrictions are equalities of
morphisms, the πi are morphisms. Lastly, πi = πj ◦ fi,j∀i, j i ≤ j is true as the tuples in the
limit (ai) satisfy fj,i(aj) = ai.

2. For all object B and morphisms fj : B 7→ Aj that satisfy the inverse ordering fj = fj,i ◦ fi for
i ≤ j, there is a unique ϕ : B 7→ lim←−Ai such that πi ◦ ϕ = fi.

(proof) Take ϕ(b) := (fi(b))i. It’s well defined (it maps onto the inverse limit) as the family fi
follow the inverse ordering for all points. It follows the commutative property by construction
and it is a morphism as it is formed by components that are morphism. It is unique as every
component function must be ϕi = πi ◦ ϕ = fi, by the commutative property.

1.7 Problem 7

Direct limits in the category of sets / groups / abelian groups / modules / rings with
unit: Let ({Ai}, {fi,j}) be an inverse system over a directed set I. Prove that

lim
−→

Ai = ⊔Ai/ ∼

where ai ∼ aj iff fi,l(ai) = fj,l(aj) for i, j ≤ l

Again, translating the universal property to the categories that matter to this problem, we need to
check
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1. lim−→Ai is a set / group / abelian group / module. That λj : Aj 7→ lim−→Ai such that λj(a) = a
are morphisms and λi = λj ◦ fi,j∀i, j i ≤ j.

(proof) Given ai ∈ Ai, λi(ai) = ai and λj ◦ fi,j(ai) = fi,j(ai). They are equivalent under ∼
because, by the definition of direct system, for all k ≥ i, j fi,k(ai) = fj,k(fi,j(ai)). The object
is still in the category as all of the categories accept disjoint unions (this would not happen,
for example, in the case of fields) and we are doing the quotient by an equivalence relation
that respects the internal operations of the object (because it is an equality of morphisms).

2. For all object B and morphisms fj : Aj 7→ B that satisfy the direct order fi = fj ◦ fij if i ≤ j,
there is unique morphism ϕ : lim−→Ai 7→ B such that ϕ ◦ λi = fi.

(proof) Construct ϕ : lim−→Ai 7→ B such that ϕ(ak) = fk(ak). It is well defined over the quotient
as if

ak ≡ br =⇒ fk,l(ak) = fr,l(br) ∃l k, r ≤ l

,

then ϕ(ak) = fk(ak) =
by comm.

fl ◦ fk,l(ak) =
by equiv.

fl ◦ fr,l(br) = fr(br) = ϕ(br). Clearly

ϕ ◦ λi(ai) =
by def.

fi(ai)

1.8 Problem 8

Show that in an abelian category we have:

1. f is a monomorphism iff ker(f) = 0.

2. f is an epimorphism iff Coker(f) = 0.

3. A monomorphism is the kernel of its cokernel.

4. An epimorphism is the cokernel of its kernel.

5. Every morphism can be expressed as the composition of an epimorphism and a
monomorphism.

6. f is an isomorphism iff f is an epimorphism and a monomorphism.

Part (1). f monomorphism ⇐⇒ Kerf = 0.
=⇒ As f is a monomorphism and f ◦ i = 0 = f ◦0 =⇒ i = 0. To see that this implies Kerf = 0,

we need to see that the tuple (0, 0) is a valid kernel and, by uniqueness of the categorical definition,
it will be the kernel. Effectively

1. f ◦ i = f ◦ 0 = 0

2. For all g ∈ Hom(S,A) such that f ◦ g = f ◦ 0 = 0 =⇒
fmono

g = 0 there exists a unique g = 0 such

that i ◦ g = g ⇐⇒ 0 ◦ 0 = 0

⇐= If f ◦ h = f ◦ h′ =⇒ f ◦ (h− h′) = 0 which, by the universal property of the kernel, implies
that ∃!g such that i ◦ g = h− h′. As Kerf = 0 =⇒ i = 0, hence i ◦ g = 0 = h− h′ =⇒ h = h′.

Part (2). Idem to Part 1, one can see that (0, 0) is a Coker of f

Part (3). I need to see that, under the hypothesis of f mono, (A, f) is a valid kernel of the cokernel.
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1. π ◦ f = 0 which is true by the definition of Coker.

2. ∀g ∈ Hom(C,B) such that π ◦ g = 0, there exists a unique g such that f ◦ g = g. Let
g = τ−1 ◦ f−1 ◦ j ◦ g. Then f ◦ g = g and, by f mono, g is unique, as we wanted.

Part (4). Idem to Part 3, one can see that (B, f) is a valid Cokernel of i.

Part (5). Take the composition f = (j ◦ f) ◦ τ or f = j ◦ (f ◦ τ). This works as j is mono, τ is epi
and f is iso.

Part (6). One implication is always true, as proven in Exercise 1. For the other, using (3), we
can see that f is the kernel of its cokernel, so it is the morphism v from the Ker CoKer f = Im f
to B. Using (4) we can see that f is the morphism w from A to CoKer Ker f = CoIm f . As the
category is Abelian, f is an isomorphism, so Im f is isomorphic to CoIm f so the starting object of
f is isomorphic to the ending space and f is an isomorphism.
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2 Section 2. Modules

2.1 Problem 1

Nakayama’s lemma. Let M be a finitely generated A-module and I an ideal of A con-
tained in the Jacobson radical = ∩M , M maximal ideal. Prove: IM = M =⇒ M = 0.

Supose M ̸= 0. As it is finitely generated and non zero, let M = ⟨m1, · · · ,mr⟩ a minimal set of
A-generators of M with r ≥ 1. Using the hypothesis, ∀m ∈M = IM =⇒ ∃s ∈ I,m′ ∈M such that
m = sm′ and, because M is finitely generated, m′ =

∑r aimi, which implies that m =
∑r(sai)mi =∑r simi, with si ∈ I. We have proven that with our hypothesis, the set of minimal A-generators of

M are also a set of I-generators of M . In particular, m1 =
∑r simi =⇒ m1(1− s1) =

∑r
2 simi. If

we show 1− s1 is invertible, m1 would be expressed as a A-linear combination of m2, · · ·mr, which
would contradict minimality.
Consider the ideal (1− s1). If it’s included in a maximal ideal F , as s1 ∈ R = ∩Fi =⇒ s1 ∈ F =⇒
1 = (1 − s1) + s1 ∈ F =⇒ F = A, which is contradictory with proper maximality of F . Hence,
(1− s1) = A, so there is a t ∈ A such that t(1− s1) = 1, 1− s1 is invertible finishing the proof.

2.2 Problem 2

Under the previous hypothesis, prove:

1. A/I ⊗A M = 0 =⇒ M = 0

2. If N ⊂M is a submodule, M = IM +N =⇒ M = N .

3. If f : N →M is a homomorphism, f : N/IN →M/IM surjective =⇒ f surjective.

Part (1). From problem 11, A/I ⊗A M ≃ M/IM = 0 =⇒ M = IM . From Problem 1, this
implies M = 0.

Part (2). M = IM + N implies, looking mod N that M/N = (IM)/N . Formally, any m ∈ M
can be expressed as m = im′ + n so for any class m = im′ + n = im′ = im′.
Hence M/N = I(M/N). By Problem 1, this implies M/N = 0 =⇒ M = N .

Part (3). The function is well defined as f(IN) ∈ IM , f(in) = if(n). f surjective =⇒
f(N/IN) = M/IM . Now, let’s see f(N/IN) = f(N)/IM .
⊆ . For all x ∈ f(N/IN) ∃y ∈ N/IN such that f(y) = f(y) = x. Hence x ∈ f(N)/IN .
⊇ . For all x ∈ f(N)/IN exist i ∈ I, n, n′ ∈ N such that f(n) = x+in′. Hence there is a n ∈ N/IN

such that f(n) = f(n) = x+ in′ = x =⇒ x ∈ f(N/IN).
Lastly, f(N)/IM = M/IM =⇒ f(N)−M = IM =⇒ M = IM + f(N) =⇒ M = f(N) =⇒ f
surjective.

2.3 Problem 3

Let (A,m) be a local ring and M be a finitely generated A-module, x1, ..., xn elements of
M . Using Nakayama’s lemma prove that:

1. x1, ..., xn generate M over A ⇐⇒ x1, ..., xn generate M/m over A/m.
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2. x1, ..., xn is a minimal system of generators of M ⇐⇒ x1, ..., xn is a basis of the
A/m-vector space M/mM .

3. All minimal systems of generators of M have the same number of elements, equal
to the dimension of the A/m-vector space M/mM .

4. x1, ..., xn are part of a minimal system of M ⇐⇒ x1, ..., xn are linearly independent
in M/mM .

Part (1). =⇒ Given a x ∈ M/mM , there are some a1, a2, · · · , an such that x =
∑

aixi =⇒
x =

∑
aixi =

∑
ai · xi =

∑
ãi · xi, so xi generate M/mM over A/m.

⇐= M/mM = ⟨x1, · · · , xn⟩A/m so all x =
∑

ãixi =⇒ x =
∑

aixi + rx′ with r ∈ m and
x′ ∈M =⇒ M = ⟨x1, · · · , xn⟩+mM =⇒

by Nakayama’s Lemma
M = ⟨x1, · · · , xn⟩.

Part (2). =⇒ Suppose not, then WLOG x1, · · ·xn−1 would generate M/mM so by Part (1),
x1, . . . xn−1 would be generators, contradicting minimallity.

⇐= Suppose not, WLOG x1, · · ·xn−1 are generators which, by Part (1), imply that x1, · · · , xn−1
are a base, which contradicts x1, · · · , xn being a base, as xn could be expressed as a linear combi-
nation of the smaller terms, contradicting linear independence.

Part (3). They are in bijection with bases of the vector space M/mM over the field A/m, in which
(if it is finite) all bases have the same size, the dimension.

Part (4). =⇒ Complete the minimal system, then by Part (2) you have a base and any subset
of a base is linearly independent.

⇐= Complete to a base, then by Part (2) you have a minimal set of generators that contain the xi.

2.4 Problem 4

Let A be a non-local ring. Prove that the A-module A has two minimal systems of
generators with a different number of generators.

On one hand, we know that 1 is a minimal generator of A of cardinality 1. We will find another set
of generators with a larger cardinality. As A is non-local (and non-degenerate), there exists at least
two distinct maximal ideals I, J . We can take a (possibly infinite) minimal system of generators of
I = ⟨i1, · · ·⟩ and an element j ∈ J, j ̸∈ I. Then, ⟨j, i1 · · ·⟩ must generate A, (as I is maximal). This
set is minimal as taking j out wouldn’t generate the elements of Ic and taking ir would contradict
minmality of the ⟨ij⟩ = I. The cardinallity of this set is clearly > 1, so it is distinct to 1.

2.5 Problem 5

Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of A-modules. Prove that if M ′

and M ′′ are finitely generated, then M is finitely generated.

Let f : M ′ 7→M be injective, g : M 7→M ′′ surjective and Imf = Kerg.
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Take m ∈ M . As M ′′ is finitely generated, g(m) =
∑n aim

′′
i . Because g is surjective, ∃m1

i ∈ M
such that g(m1

i ) = m′′i so the previous identity can be written as

g(m) =
n∑

aig(m
1
i ) =⇒ g(m−

n∑
aim

1
i ) = 0 =⇒ m−

n∑
aim

1
i ∈ Kerg = Imf

∃m′ ∈M ′ such that f(m′) = m−
∑

aim
1
i .

As M ′ is finitely generated, m′ =
∑n′

bjm
′
j =⇒ f(m′) =

∑n′
bjf(m

′
j). Let f(m′j) = m2

j .
Reorganizing the equation above,

m =
n∑

aim
1
i +

n′∑
bjm

2
j (1)

which implies that the set ⟨m1
1, · · ·m1

n,m
2
1 · · ·m2

n′⟩ generates M , so it is finitely generated.

2.6 Problem 6

Prove that Z[
√
d] is a Noetherian ring.

We will use that Noetherian property is inferred from extremes to the center (and viceversa) in a
short exact sequence. We build an exact sequence sandwitching Z[

√
d] between two Z, which we

know are Noetherian.
Let f : Z 7→ Z[

√
d] f(n) = n and g : Z[

√
d] 7→ Z g(a+ b

√
d) = b. For the definition of g we implicitly

are using that d is a non-square and every element of Z[
√
d] can be uniquely expressed as a+ b

√
d.

Also note that if d is a square, Z[
√
d] = Z which is Noetherian. Clearly, f is injective and g is

exhaustive. Imf = {a + b
√
d|b = 0} = Kerg, so the short sequence is exact, which completes the

proof.
It can be seen in an easier way by realizing Z[

√
d] ≃ Z[T ]/(T 2 − d) and, by Hilbert’s base, Z[T ]

is Noetherian and the quotient of a Noetherian module is Noetherian. Noetherian is conserved by
quotients because the short sequence on inclusion-quotient 0 7→ S 7→ G 7→ G/S 7→ 0 is exact.

2.7 Problem 7

Prove that the ring Z[2T, 2T 2, 2T 3, ...] ⊂ Z[T ] is not Noetherian.

We take the following family of ideals Ai = (2T i). Clearly Ai ⊆ Ai+1 but we will show it does not
stabilize. Suppose it did, then for some n, (2Tn) = (2Tn+1) =⇒ 2Tn+1 ∈ (2Tn) =⇒ 2Tn+1 =
p(T )2Tn for some p ∈ Z[2T, 2T 2, · · · ]. For the equality to hold, the degree of p must be exactly 1,
as Z is a domain. Hence p(T ) = A · 2T for some A ̸= 0. We have that A · 4Tn+1 = 2Tn+1 which is
a contradiction as the RHS is not divisible by 4.

2.8 Problem 8

Let M be an A-module and let N1, N2 be submodules of M . Prove that if M/N1 and
M/N2 are Noetherian (Artinian) then M/(N1 ∩N2) is Noetherian (Artinian) as well.

First, we construct the following short exact sequence

0 7→ N1/(N1 ∩N2)
f7→M/(N1 ∩N2)

g7→M/N1 7→ 0
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where f : N1/(N1 ∩N2) 7→M/(N1 ∩N2) is the natural inclusion and g : M/(N1 ∩N2) 7→M/N1 is
pass to quotient. g is well defined as if m −m′ ∈ N1 ∩N2 =⇒ m −m′ ∈ N1. f is mono and g is
epi trivially. It remains to see that Kerg = Imf ,

n ∈ Kerg ⇐⇒ g(n) = ñ = 0̃ ⇐⇒ n ∈ N1 ⇐⇒ n ∈ N1/(N1 ∩N2) ⇐⇒ n ∈ Imf

It remains to be seen that N1/(N1 ∩ N2) is Noetherian / Artinian. By the second isomorphism
theorem N1/(N1∩N2) ≃ (N1+N2)/N2 ⊆M/N2 is a submodule of a Noetherian / Artinian module,
hence its Noetherian, as we wanted.

2.9 Problem 9

Let M be an A-module, f : M →M an A-endomorphism. Prove:

1. If M is Noetherian and f surjective then f is an isomorphism.

2. If M is Artinian and f injective then f is an isomorphism.

Part (1). Consider the ascending chain of submodules Kerf ⊆ Kerf2 ⊆ · · · . Let n be its stabilizing
point, ∀m ≥ n Kerfn = Kerfm. At this point Kerfn ∩ Imfn = 0. Suppose not, then ∃k ̸= 0 such
that fn(k) = x ̸= 0 and fn(x) = 0, so f2n(k) = 0, contradicting that Kerfn = Kerf2n. Since f is
epi, Imfn = M , so Kerfn = 0. Again using surjectivity of fn−1, for all m ∈ M there is a m′ ∈ m
such that fn−1(m′) = m so f(m) = fn(m′) = 0, hence Kerf = 0, so f is mono.

Part (2). The descending chain Imf ⊇ Imf2 ⊇ · · · and using that M stabilizes at Imfn = Imfn+1.
Hence, for all x, there is a k such that fn+1(k) = fn(x). By injectivity f(k) = x, which implies f
is epi.

2.10 Problem 10

Compute HomQ(Q,Z),HomZ(Q,Q),HomZ(Z/(m),Q).

HomZ(Q,Z) = 0 Suppose f(1) = n ̸= 0. Then (n+ 1)f( 1
n+1) = f(1) = n so n+ 1 should divide n

which is contradictory, n+ 1 > n. Hence f(1) = 0, in which case bf(a/b) = f(a) = 0f(a/b) = 0, so
f ≡ 0.

HomZ(Q,Q) = Q . If f(1) = q then bf(a/b) = f(a) = f(1 + · · · + 1) = af(1) = aq, so f(t) = qt.
Denote fq the morphism fq(1) = q. Then fq+q′(t) = (q + q′)(t) = fq(t) + fq′(t) so the operator of
the abeliean groups coincide, which finishes the proof.

HomZ(Z/mZ,Q) = 0 . Again lets see f(1) = q ̸= 0 is contradictory. This time because f(m) =

f(0) = 0 ̸= mq. Hence 0 is the only plausible morphism.

2.11 Problem 11

Let A be a ring, M an A-module and I ⊆ A an ideal. Prove M/IM ≃ A/I ⊗A M .

We start with the short sequence 0 7→ I
f7→ A

g7→ A/I 7→ 0. Because −⊗A M is right exact, we get

the exact sequence I ⊗A M
f ′
7→ A⊗A M

g′7→ A/I ⊗A M 7→ 0. From the isomorphism theorem over g′
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we get A/I ⊗A M ≃ (A⊗A M)/(Kerg′) = (A⊗A M)/(Imf ′) = (A⊗A M)/(I ⊗A M). It remains to
be seen that (A⊗A M)/(I ⊗A M) ≃M/IM .
Let ϕ : A⊗AM 7→M/IM be the map ϕ(a⊗m) = am. Clearly Kerϕ ⊇ I⊗AM as ϕ(i⊗m) = im = 0.
Conversely, if am = 0 =⇒ am = im′ =⇒ m ∈ IM . Hence a⊗m = a⊗(im′′) = (ia)⊗m′′ ∈ I⊗AM ,
concluding Kerϕ = I ⊗A M . By the isomorphism theorem, M/IM ≃ (A ⊗A M)/(I ⊗A M), as we
wanted.

2.12 Problem 12

Let A be a ring and I, J ⊆ A ideals. Prove A/I ⊗A A/J ≃ A/(I + J).

From Problem 11, we have A/I⊗AA/J ≃ (A/J)/(I(A/J)). Now, define ϕ : A/J 7→ A/(I+J) such
that ϕ(ã) = a, which is well defined as if a− b ∈ I =⇒ a− b ∈ I + J . Clearly it is exaustive as for
all a there is a ã such that ϕ(ã) = a.

Let’s prove that Kerϕ = I(A/J) and, by the isomorphism theorem, we will have finished.

ã ∈ Kerϕ ⇐⇒ a ∈ I + J ⇐⇒ a = i+ j ⇐⇒ ã = ĩ+ j̃ = ĩ = i · 1̃ ∈ I(A/J)

2.13 Problem 13

Let A be a ring, M,N finitely generated A-modules. Prove:

1. M ⊗A N is a finitely generated A-module.

2. If A is Noetherian, then HomA(M,N) is a finitely generated A-module.

Part (1). Let M = ⟨mi | i ∈ [n]⟩ and N = ⟨nj | j ∈ [m]⟩. We will see that

M ⊗A N = ⟨mi ⊗ nj | i, j ∈ [n]× [m]⟩

For any m ∈M , n ∈ N m⊗ n = (
∑

aimi)⊗ (
∑

bjnj) =
∑∑

aibj(mi ⊗ nj).

Part (2). Because M if f.g, a morphism from M is uniquely defined by the images of the genera-
tors. Hence, there is a morphism inclusion Hom(M,N) 7→ Nn. Because N is f.g, N r is f.g too. As
Hom(M,N) is (isomorphic to) a submodule of a f.g module over a Noetherian ring, it is also finitely
generated.

In the last step we have used the following proposition. If A is Noetherian and M is a finitely
generated then M is Noetherian (hence any submodule, N , is finitely generated). This is just
because a f.g module M is isomorphic to Ar/N which is Noetherian by the product and quotient
closure properties.

2.14 Problem 14

Let A be a local ring, M,N finitely generated A-modules. Prove that M ⊗A N = 0 if
and only if M = 0 or N = 0. Prove that the result is no longer true if the ring is not local.

Construct the following morphism of A-modules ϕ : M ⊗A N 7→ M/mM ⊗A N/mN . Such that
ϕ(m⊗ n) = m⊗ n. By the properties of quotiens and tensor products, it is a morphism. Also, it is
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exhaustive as for any m⊗ n, there is a m⊗ n that maps there.

Now if M ⊗A N = 0, ϕ(0) = 0 =
by exh.

M/mM ⊗A N/mN ≃M/mM ⊗A/m N/mN which are vector

spaces over the field A/m. This implies, WLOG M/mM = 0 =⇒ M = mM which by Nakayama’s
Lemma implies M = 0.

The reverse implication is straight forward.

If the ring is not local this is not the case. If we have two maximal ideals I, J we can take the
A-modules A/I ̸= 0 and A/J ̸= 0 but we will see that A/I ⊗A A/J = 0. Take any ã ⊗ a′ and any
i ∈ I \ J . As A/J is a field, J is maximal, i has an inverse r. Then ã⊗ a′ = ã⊗ ira′ = ĩa⊗ ra′ = 0
as ia ∈ I.

2.15 Problem 15

Let M be a finitely generated A-module and let S ⊆ A be a multiplicatively closed set.
Prove that S−1M = 0 if and only if there exists s ∈ S such that sM = 0.

=⇒ If S−1M = 0 Then for a fixed m, m/1 = 0/1 =⇒ ∃tm ∈ S tmm = 0. Now we can use f.g
property and take the s =

∏n tmi . With this s, sm =
∏

tmi(
∑

aimi) = 0.

⇐= If there exists one such s, for all element of m/s′ ∈ S−1M , m/s′ ∼ 0/1 as there exists a t = s
such that s(m− s′0) = sm = 0.

2.16 Problem 16

Let S ⊆ A be a multiplicatively closed set. Prove that the localization functor S−1- is
exact.

We have seen in class that the functor S−1− is functor-isomorphic to S−1A ⊗A − and that the
functor N ⊗A − is right exact. So we only need to prove that if g : M ′ 7→ M is mono, then
S−1(g) : S−1M ′ 7→ S−1M is also mono, where S−1(g)(m/s) = g(m)/s. If S−1(g(m′/s)) = 0 =⇒
g(m′)/s = 0 =⇒ ∃t ∈ S such that tg(m′) =

t∈S⊆A
g(tm′) = 0 =⇒ tm′ = 0 =⇒ m/s = 0.

2.17 Problem 17

Let M be an A-module. We say that it is simple if it doesn’t contain any non-trivial
submodule (i.e. if N ⊆M is a submodule, then N = 0 or N = M). Prove:

1. Every simple module is cyclic.

2. If M,N are simple A-modules and f : M → N is an homomomorphism, then f = 0
or f is an isomorphism.

Part (1). For any m ̸= 0, ⟨m⟩ is a non trivial submodule, so it must be the complete module.
Hence M is ciclic.
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Part (2). Let f : M 7→ N be a morphism of A-modules. Because Kerf ⊂ M is a submodule, it
must be either the complete of the zero. If it is the complete Kerf = M =⇒ f ≡ 0. If not, f is
mono.

On the other hand, if M = ⟨m⟩ and N = ⟨n⟩, ⟨f(m)⟩ is a submodule of N , so it must either be the
zero or the total. If it is the zero, f(m) = 0 so f(m′) = f(am) = af(m) = 0 =⇒ f ≡ 0. If it is the
total, for all n′ ∈ N , ∃a ∈ A such that af(m) = n′ =⇒ f(am) = n′ so f is exhaustive.

As modules are an abelian category, mono and epi imply iso.

2.18 Problem 18

18. Let A be an integral domain and let M be an A-module. We say that m ∈ M is a
torsion element if there exists a ∈ A
{0} such that am = 0. Let T (M) be the set of torsion elements. Prove:

1. T (M) is a submodule of M

2. M/T (M) has no torsion.

3. If f : M → N is A-linear, then f(T (M)) ⊆ T (N).

4. If 0→M ′ →M →M ′′ → 0 is an exact sequence then 0→ T (M ′)→ T (M)→ T (M ′′) is
exact.

Part (1). m,m′ ∈ T (M) then there are a, a′ ∈ A \ {0} such that am = a′m′ = 0. Taking aa′ ̸= 0,
because A is integral domain, and aa′(m+m′) = 0, so m+m′ ∈ T (M).

Part (2). m ∈ T (M/T (M)) =⇒ ∃a ∈ A \ {0} such that am = 0 =⇒ am ∈ T (M). This implies
∃b ∈ A \ {0} such that bam = 0 = (ba)m. ba ̸= 0 because A is integral, so m ∈ T (M) =⇒ m = 0.

Part (3). x ∈ f(T (M)) means ∃m ∈ T (M) such that f(m) = x and ∃a ∈ A\{0} such that am = 0.
Hence f(m) = x =⇒ ax = af(m) = f(am) = f(0) = 0, so x ∈ T (N).

Part (4). Start with an exact short sequence 0 7→ M ′
f7→ M

g7→ M ′′ 7→ 0. Applying the functor T ,

we obtain 0 7→ T (M ′)
T (f)7→ T (M)

T (g)7→ T (M ′′) where T (f) : T (M ′) 7→ T (M) such that T (f)(m′) =
f(m′), which is well defined as f(T (M ′)) ⊆ T (M). To see the the functor is left-exact, we must
prove

1. f mono =⇒ T (f) mono. T (f)(m′1) = T (f)(m′2) =⇒ f(m′1) = f(m′2) =⇒
by inj.

m′1 = m′2

2. Imf = Kerg =⇒ ImT (f) = KerT (g).

m ∈ KerT (g) ⇐⇒ T (g)(m) = 0 ⇐⇒ g(m) = 0 ⇐⇒ m ∈ Kerg ⇐⇒
by hyp.

m ∈ Imf ⇐⇒

⇐⇒ ∃m′ f(m′) = m ⇐⇒ T (f)(m′) = m ⇐⇒ m ∈ ImT (f)
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