
Polytechnic University of Catalonia

Informatics Faculty of Barcelona

Programming Languages

Ponylang

Javier López-Contreras

May 6th

Contents

1 Introduction 3

2 Language Philosophy 3

2.1 Priorities . 3

2.2 Capabilities-secure . 4

2.3 The Actor Model . 5

3 Type System 6

3.1 Actors . 6

3.1.1 Reference Capabilities . 7

3.2 Classes . 8

3.2.1 Class composition . 8

3.2.2 Traits and Interfaces . 9

4 Execution System 10

5 Miscellaneous 11

6 History 12

7 Applications 12

8 My experience learning Pony 13

1

9 Bibliographical Analysis 13

2

1 Introduction

This paper is an exploration of the programming language Pony. It will discuss its

philosophy, its technical characteristics, its history and applications. This work was

part of the Programming Languages course at the Informatics Faculty of the Polytechnic

University of Catalonia.

Pony is a programming language developed by Sylvan Clebsch and a community of

open source hackers. Its principal aim is to facilitate the development of reliable and

fast highly concurrent programs. We will discuss how Pony handles concurrency in the

Actor Model section.

2 Language Philosophy

Language development is a very opinionated field amongst programmers. As such,

Pony’s development team have a strong vision of how the language should be designed.

They summarize their working philosophy as get-stuff-done, in contrast to the the-right-

thing and worse-is-better approaches described in Richard Gabriel Essay [4]. Their aim

is to follow a mixed strategy, not over-concentrating in neither the language theoretical

perfection nor its application-oriented side.

2.1 Priorities

The get-stuff-done philosophy means it is sometimes adequate to sacrifice certain met-

rics in favour of others. The language team define Pony’s priorities as the following

ordered list [7], any point on the list might be sacrificed in favour of the higher ones.

• Correctness. A program should behave as the programmer expected.

• Performance. A program should be fast at execution time. This is the reason

Pony takes a lot of computation out of execution time at compilation, like type

checks, exception checks, etc. We will discuss these at depth in this paper.

3

• Simplicity. Human programming speed is an important metric and easing the

human programming abilities is an aim for Pony. For example, finding bugs at

compile time is always better that running into them at runtime, so Pony makes

an effort to give human readable intelligent compilation errors for, for example,

wrong type assignment bugs.

• Completeness. As expressed by the get-stuff-done slogan, completeness is at the

end of the priority list.

2.2 Capabilities-secure

In this section we will describe a series of design decisions that are implemented in

Pony that the development team call capabilities-security. The common factor in these

is to move computation and checks to the compiler to improve performance and the

programmers feedback-loop. To do this, the compiler needs to have the maximum

information possible before the execution. Hence, Pony falls in the category of Ahead

of Time compiled languages.

First, Pony is statically strongly typed, meaning that all data objects have a type

assigned at compilation time and that cannot be changed at runtime. Even more

strongly, Pony is fully type safe [2], which means that the only operations that can

be performed on data are the ones sanctioned by its type. Thus, Pony is said to

be memory-safe, meaning that it cannot modify memory indirectly thought loose

pointers or buffer overruns. Also, memory usage is managed by a Garbage Collector,

a system that will automatically deallocate memory that is no longer referenced in the

program. Garbage collection together with memory-safety implies that memory leaks

are not possible at runtime.

Second, Pony is null-safe, meaning that if an object of a type will always be instanti-

ated. For example, class fields must be assigned by all constructors. Thanks to this, all

the calling-method-on-null bugs are caught at compilation. In Pony there is no concept

of null but there is a type None, that can be unionized with another type to knowingly

build nullable types.

Thirdly, Pony is exception-safe, meaning that it checks statically that all exceptions

4

are handled. Hence, there are no unexpected runtime exceptions.

Lastly, Pony is data race free and deadlock free, two properties that are inherited

from the Actor Model, which we explain in detail in the following section.

2.3 The Actor Model

Pony follows the Actor Model paradigm, a variant of Object Oriented Programming

that we describe below. It gives support for pure OOP and even has some features

inspired by Functional Programming.

In the process-oriented and OOP paradigms, sharing mutable state between threads is a

hard issue. It can be solved with memory locks, but these generate serious efficiency hits

and correctness problems, like deadlocks. Locks are also particularly hard to program

and are a typical source of memory bugs.

The raison d’être of Pony is to precisely to improve how concurrency is dealt with.

Pony is based in the Actor Model, a theoretical programming paradigm that gives

importance to the management of concurrent and parallel systems.

In this paradigm, the protagonist object is the Actor. An Actor is seen as the basic

unit of sequential code. All the code executed by an actor is executed sequentially, in a

single thread, so the programmer doesn’t need to worry about the problems that arise

with concurrency. On the contrary, all independent Actors are executed concurrently

and can communicate with each other via message passing.

In most implementations of the Actor Model, the message-passing is implemented via

Isolated Data, namely data that only (and exactly) has one pointer pointing to it. It is

mutable state but the one pointer at a time restriction makes it safe to share between

threads. Nonetheless, coding this in a process-oriented language is hard to get right,

as you need to enforce the promise of never using a pointer once its shared. Pony’s

compiler solves exactly that problem, it makes sure that shared data is isolated. It does

so making use of an innovative type annotation called reference capabilities, which we

describe in the Type System section.

5

3 Type System

Pony has a very strong type system. It demands a lot from programmers but, in

exchange, it can give guarantees on the execution of its programs like no memory bugs,

no nullability bugs, no wrong type assignment bugs and no unhandled expressions.

Even though it has high demands for correctness, the Pony’s compiler includes a strong

Type Inference engine that simplifies the programmers job.

Pony’s type system also includes the innovative type annotation used to enforce the

Actor Model constraints.

3.1 Actors

Actors are the main object type in Pony. They are classes with extra logic to imple-

ment the Actor model paradigm. Behaviours are a special type of method that is run

asynchronously and that actors can call on themselves or on other actors. Behaviours

always return None as they have not run yet when they are called.

Actors run single-threadedly but Behaviours are asynchronous calls. Hence, behaviours

inside of an Actor will be executed, in no particular order, after the main execution is

finished. This can be visualised in the order of the two prints in the following example.

actor Main

new create(env: Env) =>

call_me_later(env)

env.out.print("This is printed first")

be call_me_later(env: Env) =>

env.out.print("This is printed last")

An important characteristic is that Actors, unlike threads, are extremely cheap. The

overhead for an empty actor is in the order of bytes. Hence, it is expected that a Pony

program can run up to 105 actors concurrently. Pony’s internal scheduler is optimized

for this kind of load balancing.

6

3.1.1 Reference Capabilities

When an actor calls a behaviour of a different actor, the types of the arguments of the

behaviour determine if the message is send as Immutable State or as Mutable Isolated

State.

The type annotation that decides the sharing type is called the Reference Capability

and every type in Pony has one. It can be any of val, for immutable state, iso, for

mutable isolated state, box for read-only data, ref for normal non-isolated data that

can not be shared. There are a few other Reference Capabilities for technical reasons,

but they are outside of the scope of this summary.

When a behaviour is called, the Pony compiler checks that the attributes are either

val or iso. In the first case it shares the content of the variable as inmutable state.

In the second, it shares the variable as isolated data and also checks that the variable

is never used again in the initial Actor. If it is, it generates a compilation error. This

is how Pony automatically enforces the one-pointer-at-a-time invariant in the Action

model paradigm.

The following example exemplifies how to share isolated variables between Actors. The

keywords recover-end and consume indicate when the Actor takes (enforces a reference

capability on an expression) and leaves control of the data pointer.

actor Spam

let _env: Env

new create(env: Env) =>

_env = env

be accept_array(arr: Array[USize] iso) =>

_env.out.print(arr.size().string())

actor Main

new create(env: Env) =>

let spam: Spam = Spam(env)

var array: Array[USize] iso = recover

iso Array[USize]

7

end

array.push(USize(42))

spam.accept_array(consume array)

// The following line would be a compilation error, array not isolated

// env.out.print(array(0).string())

3.2 Classes

Pony gives support to the object oriented paradigm through classes. They are dealt by

the compiler as Actors without the concurrency managing logic. Unlike classical OOP,

classes in Pony are organized by composition, not inheritance.

3.2.1 Class composition

Unlike Java, Pony does not implement object inheritance and instead implements object

composition.

Classical object inheritance modularizes and reuses code based on polymorphisms be-

tween the child and parent classes. The programmer can state that, for example, a Cat

is Animal, and then the Animal’s fields and methods can be overwritten by the Cat’s

and the compiler always chooses to execute the most specific implementation.

In recent years, the general opinion has realized that the classical inheritance system

is too strict and brings a series of problems when pushed to a large scale. One of

this problems is that it is too hierarchical, a if Cat is an Animal, then it cannot be a

MemberOfTheHouse, as the relationship between the two possible parents is not hierar-

chical.

To solve this, a new method appeared called object composition. In this paradigm, the

programmer can state that a Cat has AnimalBehaviour and also Cat has

MemberOfTheHousePrivileges and the Cat class will inherit fields and methods from

both parent classes. Composition has benefits and drawbacks but it is generally re-

garded as a better language design than inheritance, for example in the classic book

Design Patterns [3].

8

Here is an example of composition in action. It makes use of the type intersection

construct that Pony supports. The class Bob will have access to both name() and

hair().

trait Named

fun name(): String => "Bob"

trait Bald

fun hair(): Bool => false

class Bob is (Named & Bald)

3.2.2 Traits and Interfaces

Pony implements two types of sub-typing, nominal sub-typing thorugh Traits and struc-

tural sub-typying throught Interfaces.

Nominal sub-typing is the usual Java-like implementation of categorical types through

interfaces (which in pony are called traits, Pony’s interfaces are a slightly different

object).

Structural sub-typing on the other hand is very interesting. A Pony programmer can

define an Interface and all the objects that follow that interface’s contract will get that

interface assigned as a parent type at compilation. The interesting part is that the

programmer does not need to indicate which objects follow the Interface, this matching

is done completely by the compiler. Structural Type Systems are not an innovation

created by Pony but are an extremely useful feature that I had never heard of before.

To maintain the safety of modules, interfaces can not ask for private fields of methods

in their contract.

Here is an example of structural sub-typing in action. We create a Compactable inter-

face and the compiler will automatically assign it to any type that has a size() and

compact() methods, for example to Array, Sets, Maps. Thanks to this, we can then

call Compactor.try compacting(...) with any of such objects.

9

interface Compactable

fun ref compact()

fun size(): USize

class Compactor

"""

Compacts data structures when their size crosses a threshold

"""

let _threshold: USize

new create(threshold: USize) =>

_threshold = threshold

fun ref try_compacting(thing: Compactable) =>

if thing.size() > _threshold then

thing.compact()

end

4 Execution System

Pony is compiled Ahead-of-Time directly into an executable. There is no Virtual Ma-

chine nor a Bytecode. Eventhough this means that compilation can be less performant

that in a Just-in-Time compiler, but Pony needs AOT to statically enforce its capabil-

ities security.

Pony gives support for a native Foreign Function Interface to C. Nonetheless, Pony can

not enforce capability safety in a program that calls a C library using the FFI. All the

Pony guarantees do not stand when the FFI API is used.

10

5 Miscellaneous

During this bibliographical research, I have found a small amount of curious properties

that I think are worth sharing.

• In Pony, the assignment expression a = b returns the old value of a. This is called

a destructive read and it has some cool properties. For example, a swap operator

can be implemented as a=b=a, instead of the usual

var atemp = a

a = b

b = atemp

This small language feature is used extensively in Actor-based message handling.

• Pony does not accept any shadowing of variables between scopes. Shadowing bugs

are caught at compile time. It also does not support Global Variables.

• Pony forces the use parenthesis in ambiguous mathematical expressions like 1+2*3.

The development team think that people often forget the priorities between alge-

braic operations (specially with weirder operators, like logical shifts). Hence Pony

makes no assumption about the mathematical priorities between operands and

flags any ambiguous expression as an error at compile time. In my experience,

operation priority mishaps are a fairly usual bug and I think this is a good general

solution to the problem.

• Large arithmetic computations is a usecase where correctness and efficiency col-

lide. A language that always checks for correctness at runtime (overflows, divisions

by 0) will loose efficiency and, in the contrary case, correctness might be compro-

mised. To solve this, Pony gives 2 sets of arithmetical operators, safe and slow

(+, -, *) and unsafe and fast (∼ +, ∼ -, ∼ *).

• Variable names can end in a ’ to indicate very similar variables. For example,

this is used in constructors. I had never seen this notation in a programming

language before.

11

6 History

Pony was born in 2014 out of the necessity of a compiler-enforced Actor paradigm

language for large concurrent systems [1].

In the early 2000, Pony designer Sylvan Clebsch, worked at a flight simulator company,

where he implemented an actor-based concurrency system for the simulator’s physics

engine. Some years later, working in finance, he had to implement a similar system for

a different purpose and he was surprised at how the same errors seemed to pop-up.

He decided to implemented a C/C++ library to handle actor-based concurrency. The li-

brary was very well received, showing a need for these systems in the industry. Nonethe-

less, programmers usually struggled enforcing the one-pointer-at-a-time invariant in

which the Actor Model’s message communication is based.

The ideas of using the Type System to enforce Actor model’s promises was developed

during Sylvan’s PhD at the Imperial College of London, under mentorship of Sophia

Drossopoulou. Little after, they started a company named Causality to develop their

idea. The company ended up going bankrupt but the open source community still

maintains and develops the language to this day.

7 Applications

Pony’s theoretical application is to build large scale, highly concurrent and performing

systems. In reality, Pony is still a somewhat experimental language. It has never

reached a stable version, which makes it hard for a mainstream project to be developed

in it. At the moment, the project is purely voluntary work and does not have any

corporation backing, so development is very slow.

Nonetheless, there are a few large projects developed in Pony, made by members of the

language development community.

• Jylis [5]. A distributed in-memory database for Conflict-free Replicated Data

Types

12

• Wallaroo [8]. Distributed Stream Processor written in Pony

8 My experience learning Pony

Pony is well documented [7], the tutorials are very well written and behaviour is well

defined.

Nonetheless, hearing about its history and reading the community forums, its hard not

to realize that Pony is slowly loosing users and lacks the support to be a general-use

production-safe programming language.

I feel like learning Pony has been very interesting to hear about what a series of very

good language engineers opine about programming language design. I have learned

the benefits and drawbacks of some modern design patters like Class Composition,

Structural Subtyping and Action model. I am sure this will be useful the next time I

have to implement a parallel programming pipeline. Nonetheless, in my opinion, the

language itself is not ready for general use and might only be used effectively by open

source language developers that can understand and fix the language problems on the

go.

9 Bibliographical Analysis

This section explains the references compiled for the production of this paper.

• Pony’s tutorial and documentation [7]. The tutorial series and the language design

documentation are extremely well written and maintained. Its the source of truth

for the implementation of Pony and it has been written accessibly for new users.

• Wikipedia entries of common Programming Language designs [9]. In Computer

Science and in Programming Language Design, the Wikipedia entries are well

sourced and maintained. I have used it to learn about type-safety, memory-safety,

null-safety.

13

• Design Patterns book [3]. p. 30, 44. I have used this book to learn about classical

Design Pattern, specifically about the Inheritance vs. Composition debate.

• Engineer’s Blogs [1], [4]. This serve to learn about the human component of the

software product, in this case, Ponylang. They are primary sources and can be

biased. We need to understand the information in this sources as the voice of a

opinionated engineer defending their own project and be careful with the biases

it might impose on our view.

• Pony’s Community Forum at Zulip [6]. Some of the coding examples in this doc-

ument have been inspired by examples explained in forum posts. In general is a

good technical source, maintained by a group of open source language develop-

ers. In contrast with other programming forums, Ponylang’s seems very beginner

friendly.

References

[1] Sylvan Clebsch. An early history of Pony. Last accessed 7 May 2022. 2017. url:

https://www.ponylang.io/blog/2017/05/an-early-history-of-pony/.

[2] Sylvan Clebsch and Sophia Drossopoulou. Fully Concurrent Garbage Collection of

Actors on Many-Core Machines. Last accessed 7 May 2022. 2013. url: https:

//www.ponylang.io/media/papers/opsla237-clebsch.pdf.

[3] Ralph Johnson Erich Gamma Richard Helm and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. 1994.

[4] Richard Gabriel. The Rise of Worse is Better. Last accessed 7 May 2022. 1992.

url: https://www.jwz.org/doc/worse-is-better.html.

[5] Jylis Landing Page. Last accessed 7 May 2022. url: https://jemc.github.io/

jylis/.

[6] Ponylang Community Forum. Last accessed 7 May 2022. url: https://ponylang.

zulipchat.com/#.

[7] Pony Language Team. The Pony Philosophy. Last accessed 7 May 2022. url:

https://tutorial.ponylang.io/index.html.

14

[8] Wallaroo Github Repository. Last accessed 7 May 2022. url: https://github.

com/WallarooLabs/wally.

[9] Wikipedia Type System. Last accessed 7 May 2022. url: https://en.wikipedia.

org/wiki/Type_system.

15

