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Problem 1.1. Let D be a square-free integer. Show that the ring of integers of Q(
√
D) is equal to Z[ 1+

√
D

2 ] if

D ≡ 1 (mod 4) and Z[
√
D] otherwise.

Solution.

• Take a base of Q(
√
D), namely e1 = 1 and e2 =

√
D. In such base, the multiplication map of a generic

element ζ = a+ b
√
D is (

a bD
b a

)

,

so its trace and norm are Tr(ζ) = 2a and Nm(ζ) = a2 − b2D.

• For ζ to be in the ring of integers O
Q(

√
D), its trace and norm must be in Z. In quadratic extensions, this

condition also suffices as the minimal polynomial of any element will be of degree at most 2, so its only
coefficients will be 1, the trace and the norm.

• Let a = x
2 and b = y

z with x, y, z ∈ Z and (y, z) = 1. Then, a2 − b2D = k iff

x2z2 − 4y2D = 4z2k

• Looking (mod 4), we get that either x or z are even.

• If x is even, a is an integer, so by the additivity of the integral elements, b
√
D must be an integer as well.

Hence, y2

z2D ∈ Z, so z2|D. But D is square-free, so z = ±1 and b is an integer. This shows that regardless

of D (mod 4), Z[
√
D] ⊆ O

Q(
√
D)

• Else, if x is odd and z is even, let z = 2z′. Then x2z′2 − y2D = 4z′2k. Looking (mod z′2), we get that
z′2|y2D =⇒ z′2|D as (y, z′) = 1. Because D is square-free, z′ = ±1, so we can assume that z = 2.

• Finally x2 − y2D = 4k, with x odd. Looking (mod 4), y2D ≡ 1 (mod 4). If D ≡ 2, 3 mod 4, this case

gives no extra solutions, so O
Q(

√
D) = Z[

√
D]. But if D ≡ 1 (mod 4), any y odd gives a solution x+y

√
D

2 ,

hence O
Q(

√
D) = Z[ 1+

√
D

2 ]

Problem 1.2. Consider the ring A = C[x, y]/(y2 − x2(x− 1)). Show that A is an integral domain but it is not
integrally closed in its field of fractions.

Solution.

• The ring A is integral ⇐⇒ f(x, y) := y2 − x2(x − 1) = (y2 + x2) − x3 is irreducible. This follows from
a general result stating that the sum of a n-th degree homogeneus polynomial and a n + 1-th degree
homogeneus polynomial is always irreducible on C[x, y].

• Note that A = C[x, y]/(y2 − x2(x− 1)) = C[x, x(x− 1)1/2]

1



• Hence, note that K = Frac(A) = C((x− 1)1/2) as the other generator x is x = ((x− 1)1/2)2 + 1

• Let f(T ) = T 2+T + x
4 , a monic polynomial with coefficients in A. One of it’s roots, −1+(1−x)1/2

2 ∈ K−A

⇐⇒ (x− 1)1/2 ∈ K −A, which is true. Hence A is not integrally closed.

Problem 1.3. Let K be a field of positive characteristic p and let f ∈ K be an element which is not a p-th
power. Let L = K[x]/(xp − f). Show that L is a field and describe the trace map Tr : L→ K.

Solution.

• L is a field ⇐⇒ f(x) = xp − f is irreducible.

• In the algebraic closure f(x) decomposes linearly and, since we are in characteristic p, it must do so in
the form f(x) = (x− ǫ)p.

• Hence, if f(x) was reducible in F [x], there must be a k < p such that (x− ǫ)k is in F [x].

• Expanding the binomial, we get that ǫk and kǫk−1 are in F . Since k < p and a field is an integral domain,
kǫk−1 6= 0. This implies that ǫ = kǫk/(kǫk−1) ∈ F , which is a contradiction with f(x) irreducible.

• We have seen that f(x) is not separable so the trace can not be expressed as the sum of the Galois
conjugates. We use the definition.

• Take a base in L, namely {1, x, · · · , xp−1}. An element on L r(x) = a0 + a1 + · · · ap−1x
p−1 has a multi-

plication representation 


a0 ap−1f · · · a1f
a1 a0 · · · a2f
...

...
. . .

...
ap−1 ap−2 · · · a0




• Hence, Tr : L→ K, r(x) 7→ p · r(0) = 0 is the constant function to zero.

Problem 1.4. Let D and D′ be distinct square free integers > 1. Show that Q(
√
D) is not isomorphic to

Q(
√
D′).

Solution.

• Suppose the contrary. Then there is an isomorphism φ : Q(
√
D)→ Q(

√
D′).

• For all q = a
b ∈ Q with a, b ∈ Z, we have φ(q) = q, as φ(a/b) = φ(a)/φ(b) and φ(a) = φ(1 + · · · + 1) =

φ(1) + · · ·+ φ(1) = a

• Now, let φ(
√
D) = γ = a+ b

√
D′, with a, b ∈ Q. Then, γ2 = φ(

√
D

2
) = D.

• γ2 = a2+b2D′+2ab
√
D′ = D, so either a or b is 0. If b = 0, γ2 = a2 = D, which contradicts D square-free.

Else, if a = 0, γ2 = b2D′ = D, which, by D square free, means b = ±1, so either D = D′ or D = −D′,
and both give contradictions of the assumed statement.

Problem 1.5. Show that Z[
√
−5] is not a principal ideal domain by showing that the ideal (2, 1 +

√
−5) is not

principal.

Solution.

• Suppose (2, 1+
√
−5) was a principal ideal, generated by π = c+d

√
−5. Then, 2 = πs and 1+

√
−5 = πt,

with s, t ∈ Z[
√
−5]

• Recall from Problem 1.1 that Nm(a+ b
√
−5) = a2 + 5b2.

• Taking norms on the two equations above, Nm(2) = 4 = Nm(π)Nm(s) and Nm(1 +
√
−5) = 6 =

Nm(π)Nm(t). We conclude that, since it is a common divisor of 4 and 6, Nm(π) ∈ {±1,±2} .
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• Nm(π) = c2 + 5d2 ≥ 0 so the negative candidates are discarded. There are no integral solutions to
c2 +5d2 = 2, so the only possibility left to consider is Nm(π) = 1 =⇒ π is a unit, we may assume π = 1.

• c2 + 5d2 = 1 =⇒ c = 1, d = 0 =⇒ π = 1

• But 1 6∈ (2, 1+
√
−5) as if 1 = 2(a+b

√
−5)+(1+

√
−5)(c+d

√
−5) = (2a+c−5d)+

√
−5(2b+c+d) =⇒

1 = 2a+ c− 5d

0 = 2b+ c+ d

=⇒ 2(a− b− 3d) = 1, which has no integer solutions because of parity.

• Hence π = 1 6∈ (2, 1 +
√
−5) = (π), which is contradictory.

HW2. September 12th

Problem 2.1. Let L/K be a finite separable extension of fields and let K → Ksep be a separable closure of K.
Show that the map

L⊗K Ksep →
∏

σ:L−֒→Ksep

Ksep, l ⊗ x 7→ (xσ(l))σ

is an isomorphism.

Solution.

• It is clear that the map is a morphism of K-vector spaces and is injective. To show surjectivity I will show
that the map is between equal dimensional vector spaces.

• If L is a n-dimensional extension of K, we have the isomorphism of vector spaces L ≃ Kn. The tensor
product commutes with the product, so L⊗K Ksep =

∏
(K ⊗K Ksep) =

∏
Ksep

• Finally, n = |{σ : L −֒→ Ksep}| because the extension is separable.

Problem 2.2. Let A = Z[
√
−5]. Show that

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

are two factorizations of 6 into irreducibles and therefore A is not a UFD. What is the factorization of the ideal
(6) as product of prime ideals?

Solution.

• Recall from Problem 1.1 that Nm(a+ b
√
−5) = a2 + 5b2.

• Notice that for all ζ ∈ {2, 3, 1+
√
−5, 1−

√
−5}, their norms are Nm(ζ) ∈ {4, 9, 6}, which are all product of 2

primes. If any of these ζ is not irreducible, they would have a non-unit factor π with norm Nm(π) ∈ {2, 3}.
But a2+5b2 = k has no integer solutions for k ∈ {2, 3}. This proves that all the ζ are irreducible elements.

• Nonetheless, they are not primes as ideals as, by the equality on the statement, each of the generated
ideals by some ζ contains a product of two elements not in (ζ). For example, 2 ·3 ∈ (1+

√
−5) but neither

of them is because Nm(1 +
√
−5) = 6 6 |4 = Nm(2). This happens for all pairings as none of the numbers

{4, 6, 9} divide each other.

• We claim that p1 = (2, 1 +
√
−5), p2 = (3, 1 +

√
−5), p3 = (2, 1 −

√
−5), p4 = (3, 1 −

√
−5) are all prime

ideals in Z[
√
−5] and then, the descomposition above as ideals is

(6) = (p1p3)(p2p4) = (p1p2)(p3p4),

which doesn’t contradict uniqueness up to reordering.
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• We first show that each (ζ) = pipj . The right to left inclusion is given by pipj ⊆ pi ∩ pj = (ζ), because of
how the pi are defined. The other inclusion comes from the equations

2 = (1 +
√
−5)(1−

√
−5)− 22

3 = −(1 +
√
−5)(1−

√
−5) + 32

1 +
√
−5 = 3(1 +

√
−5)− 2(1 +

√
−5)

1−
√
−5 = 3(1−

√
−5)− 2(1−

√
−5)

• Lastly, note that p1 = (2, 1 +
√
−5) = (2, 1 −

√
−5) = p3, so the prime ideal decomposition of 6 has a

ramification at p1 = p3.

Problem 2.3. [1, Ch.9, Ex.7] Let A be a Dedekind domain and let a ⊆ A be a nonzero ideal. Show that every
ideal in A/a is principal. Note that this implies that every ideal in a Dedekind domain is generated by two
elements.

Solution.

• By prime ideal factorization in a Dedekind domain A, a = pe11 · · · perr . By the Approximation Lemma,
A/a = A/pe11 × · · · ×A/perr .

• By the quotient structure, there is a bijection of

{ideals I ∈ A/a} ←→ {ideals J ∈ A st a ⊆ J(⇐⇒ J |a)}

As A is a Dedekind domain, the ideals J in the right side can be characterized as J = pd1

1 · · · pdr
r with

0 ≤ di ≤ ei.

• Such an ideal J , under the bijection given by the Aprox. Lemma, is J = pd1

1 × · · · × pdr
r . Suppose πi is a

generator of pdi
i ⊆ A/peii . Then J is generated by (π1, · · · , πr)

• It remains to be proven that A/pn is PID. It is necessary and sufficient that p is principal, as all other
ideals are pk. Note that p2 ( p as they are not equal in A. Hence, we can take x ∈ p − p2 and consider
the principal ideal (x) which must be one of the possible ideals pk but if k ≥ 2 =⇒ x ∈ pk ⊆ p2, which
contradicts the choice of x. Hence (x) = p, which proves that A/a is PID.

• Take any ideal I ⊆ A and any a 6= 0, a ∈ I. We know that (a) ⊆ I is a non-zero ideal. Hence, I maps
to some I ′ ⊆ A/(a). By the proof above, I ′ is principal, say I ′ = (b). Reversing the bijection, we get
I = (b) + (a) = (a, b).

Problem 2.4. Fix a prime p. Viewing Q as the field of fractions of the discrete valuation ring Z(p) we have
the p-adic valuation

νp : Q→ Z

Define
| · |p : Q∗ → R

by the formula

|x|p :=
1

pνp(x)

We extend this to all of Q with the convention that |0|p = 0.

1. Show that | · |p satisfies the axioms for a norm:

(a) |0|p = 0

(b) |xy|p = |x|p|y|p
(c) |x+ y|p ≤ |x|p + |y|p
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2. (Product formula) Show that for x ∈ Q we have

1 =
∏

p

|x|p

where on the right the product is taken over all prime numbers p as well as p = ∞, where by convention
| · |∞ us guven by the usual absolute value on R. Note here that some care should also be taken to explain
why this infinite product makes sense.

Solution.

1. For this section, we will use the notation pn||x with p prime, x = a/b ∈ Q∗ to indicate n = νp(a)− νp(b).

• a) is true by definition

• b) is equivalent to νp(xy) = νp(x) + νp(y). If p
n||x and pm||y then pn+m||xy.

• c) is implied by νp(x + y) ≤ min{νp(x), νp(y)}. This is because if pn||x and pm||y, we may assume
n ≤ m, then x+ y = pn(u+ pm−nv) and this is divisible at least n times by p. If m 6= n, this will be
divisible exactly n times by p as the other factor will be u, which is not divisible by p.

2. Let x = sign(x)
∏

p∈Z p
νp(x) be the usual prime decomposition in Q

• Notice that this product only runs over a finite number of primes, those that divide either the
numerator or denominator of x.

• The product on the statement only runs for the primes defined above and the one at infinity, so it
can be considered a finite product. For any other prime q, |x|q = q−vq(x) = q0 = 1.

• Now, notice that |x|∞ =
∏

p∈Z p
νp(x) and that |x|p = p−νp(x), so multiplying all the terms together

cancels all the exponents, ending in 1.

Problem 2.5. [4, Ch.II, §2, Ex. 2] Let n be a natural number and let p be a prime

1. Show that we can write n uniquely as

n = a0 + a1p+ · · ·+ ar−1p
r−1

with 0 ≤ ai < p.

2. Let s denote a0 + a1 + · · ·+ ar−1. Show that

νp(n!) =
n− s

p− 1

.

Solution.

1. • We can show existence inductively. For 0 ≤ n < p, the statement is trivial letting r = 1, a0 = n.
For other n, by integer division we can express n = mp + t and following by induction in m < n,
m = b0+ · · · bl−1p

l−1. Now we can set r = l+1, ai = bi−1 for i > 0 and a0 = t which gives us a valid
base extension.

• We can also show uniqueness by finite induction on the number of digits. Suppose we have two such
expressions, n = a0 + · · · and n = b0 + · · · then, n − n = 0 = a0 − b0 (mod p), so a0 = b0 mod p
and because they are 0 ≤ a0, b0 < p, we have a0 = b0. Now we can proceed (finitely) inductively
on (n − a0)/p < n. The number of digits will go to zero in finite steps, so we don’t really need the
inductive axiom.
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2.

νp(n!) =

n∑

i=1

νp(n) =
∑

i=1 st p|i
1 +

∑

i=1 st p2|i
1 + · · ·

=

⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · ·+

⌊
n

pr−1

⌋

= (a1 + · · ·+ ar−1p
r−2) + (a2 + · · ·+ ar−1p

r−3) + · · ·+ ar−1

= a1 + a2(p+ 1) + · · ·+ ar−1(p
r−2 + · · ·+ 1)

= a1
p− 1

p− 1
+ a2

p2 − 1

p− 1
+ · · ·+ ar−1

pr−1 − 1

p− 1

=
a0 + · · · ar−1p

r−1 − a0 − · · · − ar−1

p− 1

=
n− s

p− 1

HW3. September 19th

Problem 3.1. [4, Ch.I, §2, p.15, Ex. 4, 5, 6, 7]

4. Let D be a square-free rational integer 6= 0, 1 and d the discriminant of the quadratic number field K =
Q(
√
D). Show that

d = D, if D ≡ 1 mod 4

d = 4D, if D ≡ 2, 3 mod 4

and that an integral basis of K is given by {1,
√
D} in the second case, by {1, 1

2 (1+
√
D)} in the first case,

and by {1, 1
2 (d+

√
d)} in both cases.

5. Show that {1, 3
√
2,

3
√
22} is an integral basis of Q( 3

√
2).

6. Show that {1, θ, 1
2 (θ + θ2)} is an integral basis of Q(θ), θ3 − θ − 4 = 0.

7. The discriminant dK of an algebraic number field K is always ≡ 0, 1 mod 4 (Stickelberger’s discriminant
relation)

Hint: The determinant Det(σiwj) of an integral basis wj is a sum of terms, each prefixed by a positive
or negative sign. Writing P , resp. N , for the sum of the positive, resp. negative, terms, one finds
dK = (P −N)2 = (P +N)2 − 4PN

Solution.

4. • We proved the integral basis of the quadratic field in Problem 1.1. Recall from that same problem
that Tr(a+ b

√
D) = 2a

• Using these basis, the discriminant can be computed as the determinant of the trace pairing matrix.

– D ≡ 1 mod 4 . The trace pairing matrix is


 Tr(1) Tr

(
1
2 (1 +

√
D)

)

Tr
(

1
2 (1 +

√
D)

)
Tr

(
( 12 (1 +

√
D))2

)

 =

(
2 1
1 1+D

2

)

Hence the discriminant is d = D.

– Clearly {1, 1
2 (D +

√
D)} is a base as 1

2 (1 +
√
D) = 1

2 (D +
√
D)− D−1

2 and D − 1 is even.

– D ≡ 2, 3 mod 4 . The trace pairing matrix is


 Tr(1) Tr

(√
D
)

Tr
(√

D
)

Tr
(√

D2
)

 =

(
2 0
0 2D

)

Hence the discriminant is d = 4D.
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– Indeed {1, 2D +
√
D} is a base as

√
D =

√
D + 2D − 2D.

5. • Denote K = Q( 3
√
2). We have R = Z[ 3

√
2, 3
√
2
2
] ⊆ O by T 3 − 2 and T 3 − 4. Lets compute the

determinant of R, which will be an integer, by virtue of R being an extension of Z.

• First, let’s compute the trace explicitly on the base {1, 3
√
2,

3
√
22}. If a + b 3

√
2 + c

3
√
22 is a generic

element of K, it is represented as a matrix


a 2c 2b
b a 2c
c b a




so Tr(a+ b 3
√
2 + c

3
√
22) = 3a

• The trace pairing matrix is



Tr (1) Tr
(

3
√
2
)

Tr
(

3
√
22
)

Tr
(

3
√
2
)

Tr
(

3
√
22
)

Tr (2)

Tr
(

3
√
22
)

Tr (2) Tr
(
2 3
√
2
)


 =



3 0 0
0 0 6
0 6 0




so the determinant is dR = −3322.
• A priori, the determinant dO can be either of {−31,−3122,−3322}.
• Because 2 ramifies as 2 = ( 3

√
2)3, 2|dO so the first option is discarded.

• Going to the completion at 3, Q3(
3
√
2) = Q3(

3
√
2+1) and (x−1)3−2 = x3−3x2+3x−3 is Einsestein,

so the extension is totally ramified, e3 = 3. Also, 3|3, we are not in the tamely ramified case, so the
exponent in the discriminant must be ≥ e = 3, hence the second case is discarded.

6. Very similar to 5 so I’ll show the computations briefly

• Z[θ, 1
2 (θ + θ2)] ⊆ O as T 3 − T − 4 has root θ and T 3 − T 2 − 3T − 2 has root 1

2 (θ + θ2). The latter
polynomial was found computing the characteristic polynomial of the matrix representation below
with a = 0, b = 0, c = 1.

• In this base, the matrix of ζ = a+ bθ + c 12θ(θ + 1) is



a 2c 2b+ 2c
b a− b c
c 2b+ c a+ b+ c




so its trace is Tr(ζ) = 3a+ c

• Now, the discriminant is



Tr(1) Tr(θ) Tr( 12θ(θ + 1))
Tr(θ) Tr(θ2) Tr( 12θ

2(θ + 1))
Tr( 12θ(θ + 1)) Tr( 12θ

2(θ + 1)) Tr( 14θ
2(θ + 1)2)


 =




Tr(1) Tr(θ) Tr( 12θ(θ + 1))
Tr(θ) Tr(2( 12 (θ

2 + θ))− θ) Tr( 12θ(θ + 1) + 2)
Tr( 12θ(θ + 1)) Tr( 12θ(θ + 1) + 2) Tr( 12θ(θ + 1) + θ + 2)


 =



3 0 1
0 2 7
1 7 7




Hence the discriminant is dR = −107, which is a prime, hence square free. So R = O.

7. • Following the hint, let {w1, . . . , wn} an integral basis of L/K.

• Let A = (σiwi). We claim that Det(A) = P −N with P,N > 0 rational integers with

P =
∑

µ∈Sym(n) with sign(µ)=1

n∏

i=0

σi(wµ(i))

• ∀ζ ∈ Gal(K/Z), ζ = σj so

ζ(P ) =
∑

µ∈Sym(n) with sign(µ)=1

n∏

i=0

σj(σi(wµ(i))) =
∑

µ∈Sym(n) with sign(µ)=1

n∏

k=0

σk(wµ(i)) = P

since the action of σj in Gal(K/Z) is transitive. Hence P ∈ Z and, equivalently, N ∈ Z.
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• Then, the trace pairing matrix is T = AAT so DiscL/K = Det(T ) = Det(A)2 = (P − N)2 =
(P +N)2 − 4NP , which mod 4 is a square, hence its either 0 or 1.

Problem 3.2. An integral domain A is called a Euclidian domain if it admits a function

N : A− {0} → N

such that for any a, b ∈ A with b 6= 0 there exist elements s, t ∈ A such that

a = sb+ t

and either t = 0 or N(t) < N(b). Informally, we have a division with reminder respect to the function N , which
is sometimes called a Euclidian function.

1. Show that if A is a Euclidian domain then A is a PID.

2. Show that the function
N : Z[i]→ N, a+ bi 7→ a2 + b2

is a Euclidian function, and therefore Z[i] has a trivial class group.

3. Let ζ3 be a primitive third root of unity. Explicitly we can take

ζ3 =
−1 +

√
−3

2

Consider the ring Z[ζ3], and show that the function

N : Z[ζ3]− {0} → Z, a+ bζ3 7→ a2 − ab+ b2

is an Euclidian function and therefore the class group of Z[ζ3] is trivial.

Solution.

1. • Take an arbitrary ideal I ⊆ A, and consider the set N(I) ⊆ N, which is lower bounded by 0 and
discrete hence it has a minimum. Denote π one of the elements that achieve the minimum.

• For any other element x ∈ I, there are elements s, t ∈ A such that x = sπ + b and either b = 0 or
N(b) < N(π).

• In the latter, b = x − sπ ∈ I has smaller norm than π, which contradicts that π is minimal. Hence
b = 0, so x = sπ and I = (π).

2. • For any arbitrary x = a+ bi and y = c+ di in Z[i], let qR, qI , rR, rI be the quotient and residues of
the integer divisor of ac+ bd and bc− da by c2 + d2, such that

ac+ bd = qR(c
2 + d2) + rR, |NZ(rR)| ≤

1

2
(c2 + d2)

bc− da = qI(c
2 + d2) + rI , |NZ(rI)| ≤

1

2
(c2 + d2)

• Then, choose

s = qR + iqI , t =
(rR + irI)(c− di)

c2 + d2
=

• One can check that a+ bi = (c+ di)s+ t by construction, which implies that t ∈ Z[i].

• Lastly, N(t) =
r2R+r2I
c2+d2 ≤ (c2+d2)2+(c2+d2)2

4(c2+d2) ≤ 1
2 (c

2 + d2) < c2 + d2.

3. • We could do it with numbers but it is a pain, let’s do it geometrically. Let e1 = a + bζ3 and
e2 = c+ dζ3.

• The lattice L = e1+e2Z[ζ3] is mesh of equilateral triangles centered at e1 and with sidelengths N(e2)
and rotated Arg(e2) degrees. We would like to proof that there is a point of this grid in the closed
ball centered at the origin and with radius N(e2).

• Indeed, the largest ball that fits without having any lattice points is the circumscribed circle of the

fundamental mesh, which has radius
√
3
3 N(e2) < N(e2). Hence, the origin ball must contain some

point on the lattice.

8



Problem 3.3. [4, Ch.1, §2, p.5, Ex.3] Show that the integers solutions of the equation

x2 + y2 = z2

such that x, y, z > 0 and (x, y, z) = 1 (”pythagorean triples”) are all given, up to possible permutation of x, y by
the formula

x = u2 − v2, y = 2uv, z = u2 + v2

where u, v ∈ Z, u, v > 0, (u, v) = 1 and u, v not both odd.
Hint. Use Ex.2 above to show that x+ iy = ǫα2, where α = u+ iv ∈ Z[i]

Solution.

• Let’s first check that x+ iy and x− iy are coprime in Z[i]. Suppose not, then there would be a non-trivial
common divisor s+ it. Hence s+ it|x+ iy and s+ it|x− iy. Let d = s2 + t2.

– We can take norms and get d|x2 + y2 = z2.

– Adding both congruences, s+ it|2x and s+ it|2y, hence, taking norms d|4x2 and d|4y2.
– d is a common divisor of 4x2, 4y2, z2 so, up to sign, it must be either 2 or 4. Recall d = 1 implies

s+ it unit, which is not a non-trivial divisor.

– Hence, 2|z2 =⇒ 4|z2 so x and y must be odd and x2 + y2 = 0 mod 4. But, the sum of two odd
squares can only be congruent to 2, not 0.

– Hence x+ iy and x− iy are coprime on Z[i].

• x2 + y2 = z2 =⇒ (x+ iy)(x− iy) = z2. Knowing x+ iy and x− iy are relatively prime, by Problem 2,
we have x+ iy = ǫ(u+ iv)2 with ǫ a unit. Then, x = ǫ(u2 − v2) and y = ǫ2uv.

• Recall units in Z[i] are 1,−1, i,−i and x, y ∈ Z+, u, v ∈ Z implies ǫ = 1, which finishes the proof.

HW4. September 26th

Problem 4.1. [2, p.30, Ex. 19] Let R be a commutative ring and fix elements a1, a2, · · · ∈ R. We will prove by
induction that the Vandermonde determinant

∣∣∣∣∣∣∣

1 a1 · · · an−1
1

...
...

. . .
...

1 an · · · an−1
n

∣∣∣∣∣∣∣

is equal to the product
∏

1≤r<s≤n(as−ar). Assuming that the result holds for some n, consider the determinant

∣∣∣∣∣∣∣∣∣

1 a1 · · · an1
...

...
. . .

...
1 an · · · ann
1 an+1 · · · ann+1

∣∣∣∣∣∣∣∣∣
.
Show that this is equal to ∣∣∣∣∣∣∣∣∣

1 a1 · · · f(a1)
...

...
. . .

...
1 an · · · f(an)
1 an+1 · · · f(an+1)

∣∣∣∣∣∣∣∣∣
.
for any monic polynomial f over R of degree n. Then choose f cleverly so that the determinant is easily
calculated.

Solution.
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• The determinant is invariant by adding to a column a linear combination of other columns. Since the
other columns are precisely the powers of ai, you can build any monic polynomial of degree n on ai in
this way.

• Choose f(x) = (x − a1) · · · (x − an), evaluating at ai the last column is all 0 but the last element which
gives (an+1 − a1) · · · (an+1 − an).

• Expanding the determinant by that row and applying the inductive step, we get the desired result.

Problem 4.2. Using problem 4.1, show that if K = Q(α) is a number field generated by an algebraic integer
α, and f is the monic irreducible polynomial of α over Q, then the discriminant of Z[α] is equal, up to sign to
NK/Q(f

′(α)).

Solution.

• Let f = a0 + a1x+ · · · an−1x
n−1 + xn, ai ∈ Z be the minimal polynomial of α.

• Choose the base {1, α, · · · , αn−1} of Z[α].

• Q(α) is the splitting field of f over Z, so it is Galois. Hence we can use the discrminant formula in the
Galois case.

Disc(Z[α]) =


Det




1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

αn−1
1 αn−1

2 · · · αn−1
n







2

=
∏

i6=j

(αi−αj)
2 = f ′(α1) · · · f ′(αn) = NQ(α)/Q(f

′(α))

Problem 4.3. [2, Ch.2, Ex. 23] Just as with the trace and norm, we can define the relative discriminant DiscLK
of an n-tuple, for any pair of number fields K ⊆ L, [L : K] = n

1. Generalize Theorems 6-8 and the corollary to Theorem 6. [2, Ch.2]

2. Let K ⊆ L ⊆M be number fields, [L : K] = n, [M : L] = m and let {α1, · · ·αn} and {β1, · · · βm} be bases
for L over K and M over L, respectively.

Establish the formula

DiscMK (α1β1, · · · , αnβm) = (DiscLK(α1, · · · , αn))
m ·NL

K(DiscML (β1, · · · , βm))

Hint. There is a long suggestion in the book.

3. Let K and L be number fields satisfying the conditions of Corollary 1, Theorem 12. Show that (DiscT ) =
(DiscR)[L:Q](DiscS)[K:Q]

Solution.

1. I state the new theorems in the relative case. As all the theorems deal with computing discriminants of
a given tuple, the result will be integers, not ideals. The proofs are exactly the same as in the original
setting. The setting is the following. L/K an extension of number fields, α1, . . . , αn ∈ L

• Theorem 6. Disc(α1, . . . , αn) = Det(TrK(αiαj)), where TrK : L→ K is the generalized trace.

• Corollary. Disc(α1, . . . , αn) ∈ K and if all are algebraic integers, Disc(α1, . . . , αn) ∈ OK

• Theorem 8. If L = K[α], with monic minimal polynomial f ∈ K[x], and αi all the roots of f , then

Disc(1, α, . . . , αn−1) =
∏

i<j

(αi − αj) = ±NK(f ′(α))

with + iff n = 0, 1 mod 4 and where NK : L→ K is the generalized norm.

2. • Let σ1, . . . σn ∈ Aut(L/K) −֒→ Aut(M/K) and τ1, . . . , tn ∈ Aut(M/L). By Galois theory, the σiτj ∈
Aut(M/K) are all the automorphisms.
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• Now,

DiscL/K(αiβj) = Det2




σ1τ1(α1β1) σ1τ1(α2β1) . . . σ1τ1(αnβm)
σ2τ1(α1β1) σ1τ2(α2β1) . . . σ1τ2(αnβm)

...
...

. . .
...

σnτm(α1β1) σnτm(α2β1) . . . σnτm(αnβm)


 =

= Det2




σ1(α1)σ1τ1(β1) . . . σ1(αn)σ1τ1(βm)
...

. . .
...

σn(α1)σnτm(β1) . . . σn(αn)σnτm(βm)


 =

= Det2




S1 0 . . . 0
0 S2 . . . 0
...

... . . .
...

0 0 . . . Sn


Det2



A11 . . . A1n

...
. . .

...
An1 . . . Ann




, where Aij = σi(αj)× Idm and

Sh = σh




τ1(β1) . . . τ1(βm)
...

. . .
...

τm(β1)
. . . τm(βm)




with σh applied element-wise.

• Computing the determinants as the product of blocks, we get the desired equality.

3. • If you have integral basis α1 . . . αn of R and β1 . . . βm of R, α1β1 . . . αnβm is an integral basis of
T = OR·S .

• By the proposition above applied to the chain Z ⊆ R ⊆ T

DiscT = (DiscR)m ·NR/Z(DiscT/R(β1 . . . βm)) = (DiscR)m(DiscS)n

• In the last step, we are using that DiscT/R(β1, . . . , βm) = DiscS/Z(β1, . . . , βm). This is because
the Galois groups Aut(S/Z) = Aut(T/R) and β1, . . . , βm is a base of both extensions. Hence the
computation of the determinant is exactly the same and gives the same result.

• We are also using that the norm is just the n-th power if the elements is in the base field.

Problem 4.4. [2, Ch.2, Ex. 34] Let w = e2πi/m, m a positive integer.

1. Show that 1 + w + w2 + · · ·+ wk−1 is a unit in Z[w] if k is relatively prime to m.

Hint: Its inverse is (w − 1)/(wk − 1); show that w = whk for some h ∈ Z.

2. Let m = pr, p a prime. Show that p = u(1− w)n where n = φ(pr) and u is a unit in Z[w].

Hint. See Lemma 2, Theorem 2 [2, Ch.2]

Solution.

1. • Following the hint, we only need to show that if (k,m) = 1, w = whk for some h ∈ Z. If this is
shown, then the inverse of 1 + · · ·+ wk−1 will be 1 + wk · · ·+ wk(h−1), which is clearly in Z[w].

• Let λ(m) be the group of m-th roots of unity with the usual complex product. It is a cyclic group
of order m generated by w. If (k,m) = 1, the automorphism x 7→ xk is injective as x 6= 1 and
xk = 1 =⇒ (x) is a non-trivial subgroup of order d|k but d 6 |m by coprimality.

• An injective morphism on a finite group is surjective so there is some element wh that maps onto w,
giving w = whk.

2. • Lemma 2 in [2] gives the following identity. If w = e
2πi
pr , we have

∏

1≤k≤pr st p 6|k
(1− wk) = p

• We can multiply both sides by w−1
/ 1− wk, which are units of Z[w] for all k coprime with pr, or

equivallently p 6 |k. Note that there are φ(pr) such k. We get the desired result

(w − 1)φ(p
r) = p · (unit)

11



HW5. October 3rd

Problem 5.1. Give and example of two different number field K1 and K2 such that there is a prime p which
is totally ramified in both K1 and K2 but not totally ramified in the compositum K1 ·K2.

Solution.

• Choose K1 = Q(
√
3) and K2 = Q(

√
7), quadratic fields. From problems 1.1 and 3.1 we know that the

rings of integers are Z[
√
3] and Z[

√
7] respectively and the discriminants are 4 · 3 and 4 · 7 respectively.

• In both cases 2|Disc, so 2 ramified.

• Because they are extension of degree 2, ramified implies completely ramified.

• Their compositum Q(
√
3,
√
7) which contains Q(

√
21) as a subfield. But 21 ≡ 1 mod 4, so the discrimi-

nant is 21 (odd), so 2 splits (2) = p1p2.

• As 2 splits in a subfield, the only way for it to completely ramify in the higher field is if p1O = p2O but
that would imply p1 = p2, which is a contradiction. Hence 2 is not completely ramified in the compositum.

Problem 5.2. Let N > 0 be an integer and consider the ring

ZN = lim←−
n

Z/NnZ

Show that there is a natural isomorphism

ZN ≃
∏

p|N
Zp

where the right product is taken over primes dividing N .

Solution.

• By Chinese Remainder Theorem, Z/NnZ =
∏

Z/peini Z and the inverse limit distributes with the product.

• For a fixed constant e, lim←−n
Z/penZ = Zp as finite jumps don’t matter as long as you have pkn arbitrarily

large, the other values are completely determined by the inverse system.

Problem 5.3. Let A be a complete discrete valuation ring whose fraction field is of characteristic 0 and whose
residue field k is perfect of characteristic p > 0. Show that for every x ∈ k there exists a unique lifting of x to
A with has a pn-th root in A for all positive integers n. This lifting is usually denoted [x].

Solution.

• Let π be a uniformizer of the d.v.r and A = lim←−m
A/πm

• We have a value x ∈ A/π which is a pn-th power for all n, by A/π perfect.

• We will show that there is a unique lift of x in each A/πm that is a perfect pn-th power for all n by
induction on m. Compatible elements of the inverse system will give the desired element of the inverse
limit.

• Suppose rm ∈ A/πm is the unique lift of x that is a perfect pn-power for all n.

• Any lift will be of the form rm+1 = rm + βπm, with β ∈ A/π

• For any n, we need consider the polynomial T pn − rm − βπm. We need to choose β such that all these
polynomials have roots in A/πn+1

• By the induction hypothesis, looking mod πm, T pn − rm has a solution un ∈ A/πm

• A lift of this solution will have the form un + γnπ
n, with γn ∈ A/π. We get

(un + γnπ
n)p

n − rm − βπn = upn

n − rm + pnupn−1
n πnγn − βπn

12



• All of the other terms in the power get canceled mod πn+1 as they have a factor πkn, k > 1.

• By induction, we know πn | upn

n − rm =⇒ upn

n − rm = snπ
n

upn

n − rm + pnupn−1
n πnγn − βπn = πnsn + pnupn−1

n πnγn − βπn = πn(sn + pnupn−1
n γn − β)

• For this to be 0 mod πn+1, the part inside of the parenthesis must be divisible by π

• Going to A/m, we need β = sn + pnupn−1
n γn = sn mod π.

TODO. I need to see the sn don’t depend on n

Problem 5.4. [5, Ex.1, p.30, (Krasner’s lemma)] Let E/K be a finite Galois extension of a complete field K.
Prolong the valuation of K to E. Let x ∈ E and let {x1, · · · , xn} be the set of conjugates of x over K, with
x = x1. Let y ∈ E be such that ||y − x|| < ||y − xi|| for i ≥ 2. Show that x belongs to the field K(y).
Hint. Note that if xi is conjugate of x over K(y), then ||y − x|| = ||y − xi||.

Solution.

• Suppose that there is a σ ∈ Aut(E/K) that moved σ(x) = xi but made was fixed on K(y). Then
||y − x|| = ||σ(y)− σ(x)|| = ||y − xi||, contradicting the statement.

• In the first equality we are using completeness of K to state that the norms || · || and || · || ◦ σ are both
extension of the norm in K and hence equivalent. Looking at both in K we can fix the equivalence
constant to 1.

• Hence for all σ ∈ Aut(E/K(y)), σ(x) = x, which, by the Galois correspondence, implies x ∈ K(y).

HW6. October 17th

Problem 6.1. [5, Ex. 1, 2, 3, p.59]

1. In the AKBL setting. Suppose that B (hence also A) is a DVR and suppose the extension l/k of residue
fields is separable. Show that if B = A[x], and y is sufficiently near to x, then B = A[y].

Hint. With these hypothesis, Prop. 12 [5] proves that B has a power basis on A.

2. In the general case, let B be a prime ideal of B whose corresponding residue extension is separable. Show
that there exists an x ∈ B generating the extension L/K such that the conductor r of B in A[x] is prime
to B

Hint. Apply problem 1 to the completions of B and A.

3. Suppose that A is a discrete valuation ring and that B is ”completely decomposed”, i.e., that there are
n = [L : K] prime ideals of B above the prime ideal p of A. Show that in order for there to exist an x ∈ B
such that B = A[x], it is necessary and sufficient that n ≤ Card(K), where K is the residue field of A.

Solution. TODO

Problem 6.2. [4, Ex. 3, p.176] Show that the maximal unramified extension of the power series field K = Fp((t))
is given by T = Fp((t)) where Fp is the algebraic closure of Fp and the maximal tamely ramified extension by
T ({ m
√
t | m ∈ Z, (m, p) = 1}).

Solution.
TODO

Problem 6.3. [4, Ex. 1, 2, 3, p.142]

1. The logarithm function can be continued to a continuous homomorphism log : Q∗
p → Q and the exponential

to a continuous homomorphism exp : p
1

1−p → Q∗
p, where p

1
1−p = {x ∈ Qp | νp(x) > 1

1−p} and νp is the
unique extensions of the normalized valulation on Qp

13



2. Let K/Qp be a p-adic number field. For 1 + x ∈ U (l) and z ∈ Zp, one has

(1 + x)z =

∞∑

v=0

(
z

v

)
xv

The series converges even for x ∈ K such that νp(x) >
e

p−1

3. Under the above hypotheses one has

(1 + x)z = exp(z log(1 + x)) and log(1 + x)z = z log(1 + x)

Solution. TODO

HW7. October 24th

Problem 7.1. Please write a few sentences suggesting a topic for your term paper.

I would be interested in writing about Artin’s primitive root conjecture, in particular about the proof of the
conjecture in the function field setting, due to Herbert Bilharz and depending on the Weil Conjectures. This
corresponds to Chapter 10 in M.Rosen Number Theory in Function Fields.

This topic fits my interests because I am currently working with Prof. Shin towards proving a generalization
of Artin’s conjecture with a different, more elementary, strategy given by a recent paper by Seoyoung Kim and
M. Ram Murty.

Problem 7.2. [3, Ex. 4-4, 4–7]

1. Show that Q(
√
−23) has class number 3 and that Q(

√
−47) has class number 5.

2. Let Q[
√
−1,
√
5]. Show that OK = Z[

√
−1, 1+

√
5

2 ]. Show that the only primes (in Z) that ramify in K are

2 and 5, and that their ramification indexes are both 2. Deduce that K is unramified over Q[
√
−5]. Prove

that Q[
√
−5] has class number 2, and deduce that K is the Hilbert class field of Q[

√
−5]

Solution.

1.

• Note that, for D square-free, Q(
√
D) is Galois over Q.

• Q[
√
−23]

– The constants in the Minkowski bound are r1 = 0, r2 = 1, d = 2. By Problem 3.1 Disc = −23,
which gives B = 2!

22 (
4
π )

1
√
23 ≈ 3.05

– If J = βα1

1 . . . β
αg
g , N(J) = pα1f1

1 · · · pαgfg
g . Where pi = βi ∩ Z. For this to be ≤ 3, we need

pi ∈ 2, 3 and αifi = 1.

– Hence, Minkoski bound states that every element of the class group has a representative as some
J that can be either prime over 2 or 3.

– Note that 2, 3 don’t divide the discriminant, so they don’t ramify. They either split into two
primes or stay inert.

– 1
2 (1+

√
−23)× 1

2 (1−
√
−23) = 6 ∈ (2), and neither of the terms are in (2) = {a+ b

2 (1+
√
D) | a, b ∈

Z even}. Hence (2) is not a prime ideal in O, so it splits (2) = p1p2.

– We found 1
2 (1 +

√
−23) | (2) but is not in (2), so p1 = (2, 1

2 (1 +
√
−23)) | (2) but is not (2). As

we are in the Galois case, p2 = p1

– Exactly as before, 1
2 (1 +

√
−23) × 1

2 (1 −
√
−23) = 6 ∈ (3) but neither of the terms is in (3) =

{a+ b
2 (1 +

√
D) | a, b ∈ Z, a ≡ b ≡ 0 mod 3}. Hence (3) is not prime, it splits as the product of

two distinct primes (3) = p3p4.

– By the same reasons as (2), p3 = (3, 1
2 (1 +

√
−23) and p4 = p3.
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– But,

p1p
−1
3 = p1p4 =

(
6, 1−

√
−23, 3

2
(1 +

√
−23), 1

4
(1 + 23)

)
=

(
1

2
(1 +

√
−23)

)

so, p1 ∼ p3 in the class group.

– Hence, the class group has 3 elements, {1, p1 = p3, p2 = p4}.

• Q[
√
−47]

– The constants in the Minkowski bound are r1 = 0, r2 = 1, d = 2. By Problem 3.1 Disc = −47,
which gives B = 2!

22 (
4
π )

1
√
47 ≈ 4.36

– If N(J) ≤ 4, J can again only have factors above 2 and 3. Again, neither of them ramify as they
don’t divide the discriminant, either they decompose as a product of 2 prime ideals, or they are
inert.

– We also count with the fact that 1
2 (1 +

√
−47) 12 (1−

√
−47) = 12 ∈ (2) and ∈ (3) but neither of

the factors are in (2) nor in (3).

– By the same reasons as in D = −23 case, (2) = p1p2 and (3) = p3p4, with p1 = (2, 1
2 (1+

√
−47))

and p3 = (3, 1
2 (1 +

√
−47))

– This time,

p1p
−1
3 =

(
6, 1−

√
−47, 3

2
(1 +

√
−47, 1

4
(1 + 47))

)
=

(
1−
√
−47, 3

2
(1 +

√
−47

)

as 6 = 2
(
3
2 (1 +

√
−47)

)
+ 3

(
1−
√
−47

)
. This ideal is not principal as N

(
1−
√
−47

)
= 48,

N
(
3
2 (1 +

√
−47)

)
= 108 and 48 6 |108.

– Hence, the class group is {1, p1, p2, p3, p4}, with order five.

2. • Note K = Q(
√
−1,
√
−5), O = OK . We will also note i =

√
−1, φ = 1+

√
5

2 and φ̂ = 1−
√
5

2 .

• We will use that Q(i),Q(
√
5) and Q(

√
−5) are all subextensions of K/Q. For a prime in p to ramify

completely over K, it need at least to ramify over each of the subextensions.

• Z[i, φ] ⊆ O from the monic integer polynomials x2 +1 and x2− x− 1. Also, note
√
5 = i

√
−5, hence

it is in K.

• Let’s compute the discriminant of Z[i, φ] over Z[i]. Take {1, φ} as a basis. Using the formula of the
discriminant in the Galois case, we get

DiscZ[i,φ] = Det2
(
1 φ

1 φ̂

)
= 5

whose Gaussian prime decomposition is (1 + 2i)(1 − 2i), hence it is not a square in Z[i]. Hence
O = Z[i, φ].

• In problem 2.2, we saw that 2 and 5 ramify on Q(
√
−5) ⊆ K so they must ramify in K. Nonetheless,

2, 5 do not ramify in Z[i], so they can not totally ramify in K.

• The Minkoski bound on Q(
√
−5) is Q = 2

22 (
4
π )
√
20 = 2.8, hence any non principal ideal must be over

2. The only ideal over 2 is (2, 1 +
√
−5) which, as we proved in Problem 2.2, is not principal. Hence

the class group is Z/2Z.

• Note that K/Q(
√
−5) is Galois of degree 2 and with Galois group {1, σ}, with σ the complex conju-

gation.

• As the only primes ramified over Z are 2 and 5 with ramification 2 and those already ramified over
Q(
√
−5), the extension Q(

√
−5) −֒→ K is unramified. By being unramified and having Galois group

isomorphic to the class group of Q(
√
−5), K is the Hilbert class field of Q(

√
−5)

Problem 7.3. [4, Ex. 2, p. 38] Show that the quadratic fields with discriminant 5, 8, 11, -3, -4, -7, -8, -11
have class number 1.
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D 5 2 11 −3 −1 −7 −2 −11

Disc 5 8 11 −3 −4 −7 −8 −11
r1 2 2 2 0 0 0 0 0
r2 0 0 0 1 1 1 1 1

BK ≈ 1.11 1.41 1.65 1.10 1.27 1.68 1.80 2.11

Solution.

• The Minkowski bounds are

• In all of them but the last, for any I in the class group, there is a representative J with N(J) = 1. This
implies J = O, which is principal generated by any unit. Hence, the class group is trivial.

• The case of −11 has to be done separately as the representative J could be a prime over 2. 2 6 | − 11, so
it doesn’t ramify so it’s either inert or split in two.

• Suppose

(
a+

b

2
(1 +

√
−11)

)(
c+

d

2
(1 +

√
−11)

)
∈ (2) ⇐⇒

ac− 3bd = cb+ ad+ bd = 0 mod 2

which only has solutions with either a = b = 0 or c = d = 0, proving (2) is a prime in O.

• Hence, the class group is trivial.

HW8. November 7th

Problem 8.1. Let D be a positive integer not congruent to 1 mod 4

1. Show that if a2 −Db2 = 1 and a+ b
√
D > 1 (in the sense of real numbers) then a > 1 and b > 0

Hint. Notice that (a+ b
√
D)−1 = a− b

√
D and therefore we have a+ b

√
D > 1 > a− b

√
D > 0.

2. Let K be the field Q(
√
D) and let U be the unit group of OK . Show that there exists a fundamental unit

u ∈ U of the form a+ b
√
D with a and b positive, by showing that if a unit u = a+ b

√
D satisfies the two

conditions

(a) a and b are positive

(b) a+ b
√
D > 1

and b is minimal subject to these conditions, then u is a fundamental unit

Solution.

1. • a+ b
√
D > 1 and 1 > a− b

√
D > 0 imply 2b

√
D > 0 =⇒ b > 0 and, similarly, a > 1/2.

• Since a2 = 1 +Db2 > 1 and a > 1/2 > 0 we have a > 1.

2. • Units excluding ±1 come in pairs, |a + b
√
D| > 1 ⇐⇒ |a − b

√
D| < 1. Hence to look for a

fundamental unit, we may restrict to only the first case.

• |a+ b
√
D| > 1 is a unit, then a and b must have the same sign as |a− b

√
D| < 1. As ±1 are roots of

unity, we can restrict the search to a, b > 0.

• For a + b
√
D > 1, a, b > 0 to be a fundamental unit, it must be the (a, b) that minimizes the value

a + b
√
D. If there was a tuple with smaller value but still > 1, (a + b

√
D)n would never reach that

value. This necessary condition is also enough by the Unit Theorem.

• Minimizing only over b is enough as a =
√
±1 +Db2 which, in both cases, is monotone with respect

to b. This is to say that the tuple minimizing b will also minimize a+ b
√
D.
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Problem 8.2. [4, Ex. 1, p.43] Let D > 1 be a squarefree integer and d the discriminant of the real quadratic
number field K = Q(

√
D). Let x1, y1 be the uniquely determined rational integer solution of the equation

x2 − dy2 = −4

or, in case this equation has no rational integer solutions, of the equation

x2 − dy2 = 4

for which x1, y1 > 0 are as small as possible. Then

ε1 =
x1 + y1

√
d

2

is a fundamental unit of K.

• In the real quadratic case, units come in pairs, one with absolute value > 1 and, its conjugate with < 1,
as their product is ±1 and the only units with absolute value 1 are ±1.

• Hence, one will be able to find a fundamental unit with > 1. This will necessarily be the one that that
minimizes absolute value, as |a| > 1 =⇒ |a|k > |a| for k > 1.

• D ≡ 1 mod 4

– d = D and {1, 1+
√
D

2 } is an integral basis

– u = x+y
√
D

2 is a unit ⇐⇒ N(u) = x2−Dy2

4 = ±1 ⇐⇒ x2 −Dy2 = ±4

• D 6≡ 1 mod 4

– d = 4D and {1,
√
D} is an integral basis

– If x2 − 4Dy2 = ±4 =⇒ x is even.

– Now, u = x
2 + y

2

√
4D is a unit ⇐⇒ x2

4 − 4D y2

4 = ±1 ⇐⇒ x2 − 4Dy2 = ±4.

• In both cases taking (x, y) that minimize the absolute value of u corresponds to taking x, y solution of the
equations in the priority stated. Per the observation, that proves that choice of x, y gives a fundamental
unit.
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