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Objective

This will be an overview talk: mainly story, no hard proofs.

Definition (Tate Module)

Let E/K be an elliptic curve over a field K and | € Z a prime. The l-adic
Tate Module is

T(E) = lim B[I"]

Motivating example:

Proposition

Let Ey, Es be elliptic curves over K. Then Hom(E1, Eq) has rank at most
4 as a Z-module.
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Structure of the talk

1. Elliptic curves

2. Isogenies, Hom(E1, Es)

3. The torsion subgroup, Eiors = Up E[n]
4. The Tate Module

All the propositions in the presentation are taken verbatim from
Silverman’s The Arithmetic of Elliptic Curves chapters 1, 2 and 3.
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Part 1
Curves, Riemann-Roch and
Weierstrass Form
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What is an Elliptic Curve?

A priori, it is not y? = 23 + ax + b. Having a Weierstrass form is a
consequence of Riemann-Roch Theorem.

Definition (Elliptic Curve)

An elliptic curve E over a base field K is a connected, non-singular
projective algebraic variety on K of dimension 1 and genus 1 together
with a base point O € E(K).

Recall
1. Algebraic variety. Zero-set of a polynomial ideal in P% or A’
2. Dimension. Transcendence degree K (V)/K
3. Non-singular. At all points dimz Mp/M% = dim V
4. Genus. From R-R, g :=l(K¢), K¢ € Div(E) the canonical divisor.
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Reminder of Riemann-Roch |

Let C/K be an algebraic curve.
Definition (Divisors)
Let Div(C) = {3 pccnp(P)|P € E,np € L} be the abelian group of
formal sums of points in C'.
@ It is partially ordered by D1 > Dy <= np(D1) > np(D2) VP € C.

o Define deg(d) = S.np € Z and let Div’(C) be the subgroup of
divisors of degree 0.

Definition (Principal Divisor)
For f € K(E)*, define div(f) € Div(C) as div(f) = > pccordp(f)(P)

v

Claim. All principal divisors have degree 0. (Analogous to the product
formula of all norms on Q).
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Reminder of Riemann-Roch Il

Definition (Picard Group)
Pic’(C) = DiVO(C)/ ~, with dy ~ dy if dy — do is a principal divisor.

There is a well defined K¢ € Pic?(C) called the canonical divisor that is
div(w) for any w differential form.

Definition (Vector space of a divisor)

Let L(D) = {f € K(C)* : div(f) > =D} U{0}. It is a vector space over
K, let (D) be its dimension.

Claim One can prove the £(D) are finite dimensional.
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Reminder of Riemann-Roch llI

Theorem (Hirzebruch-Riemann-Roch)

Let C' be a smooth curve of and let Ko be a canonical divisor on C'.

There is a unique integer g > 0, called the genus of C, such that for every
D € Div(C),

I(D)—1l(Kc—D)=degD —g+1

Usecase.

1. R-Ris used to prove the existence or non-existence of f € K(C)*
with certain poles and zeroes of certain orders.

2. We will use it to prove that all elliptic curves have a Weierstrass Form.
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Weierstrass Form

Let F be an elliptic curve defined over K

Theorem (Existance of Weierstass Form)

There exist functions z,y € K(F) such that the map
¢:E—P?
gives an isomorphism of E /K onto a curve given by a Weierstrass equation
C:Y?’+a1 XY +azY = X2+ as X+ asX + as

with a; € K and ¢(O) = [0, 1,0].
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Proof of Existence of Weierstrass Form

e Study L£(n(0O)), the space of f € K(E)* with at most a single pole
at O, at most of order n.

@ By R-Rit hassize [(n) = (K¢ —n(0))+n—g+1=nVn>1

@ We can choose z,y such that {1,x} is a base of £(2(0)) and
{1,z,y} is a base of L(3(0)).

e Now, L(6(O)) has dimension 6 but contains all seven

1,z,y,y?, x2, 23, zy, so there must be a linear relation

Ay + Agx + Asy + Agx® + Asay + Agy? + A7z? =0

Claim. By algebraic manipulation, we can get to a simpler Weierstrass
equation. If char(K) # 2,3 we can reduce to y? = 23 + ax + b.
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Group Law Reuvisited

Comment. The addition of points in an Elliptic Curve is often justified

geometrically. There is also a algebraic interpretation that comes from R-R
and g = 1.

Proposition
Let (E/K,O) an elliptic curve

L (P)~(Q) < P=Q

2. Vd € DV(E),3P € E such that D ~ (P) — (O)
Hence, there is a bijection of sets r : E = Pic’(E)

Obs. E inherits a group structure from Pic’(E).
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Part 2

Isogenies of an Elliptic Curve
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Isogenies

Let (E1,O1) and (E2,O2) be elliptic curves over K.

Definition (Isogeny)
An isogeny between Fy and Es is a morphism of curves ¢ : Fy — FE5 that
sends ¢(01) = Os.

Comment. They are the morphisms in the category of elliptic curves.

Claim. ¢(P + Q) = ¢(P) + ¢(Q), hence the group structure maps
correctly.
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Degree of an Isogeny

Let ¢ : 4 — E5 be an isogeny.
Obs. As morphism of curves, it defines ¢* : K(FE2) — K(FE)
Definition (Degree)

If ¢ is constant, it has degree 0. Else, the degree of ¢ is the degree of the
extension K (E1)/¢*(K(Es)). We note deg ¢ = [K(E1) : ¢*(K (E»))]

Claims.
1. degop < x
2. deg(1 o @) = deg(v) deg(¢)
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Multiplication by m

Let (E,O) be an elliptic curve over K.
Definition
Let m > 0, multiplication map is
[m]: E— E
P—P+..-+P
—_—

m

Extend it to m € Z with [0]P := O and [-m](P) := —[m|(P) VP € E.

v
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Obs.

1. [m] is an isogeny. This is a corollary of an important proposition that
states that the +: £ X E — E and — : E — E are morphisms of

varieties.
2. [m] + [n] = [m +n]
3. [m] o [n] = [mn)]

Claim. [m]|=[n] < m=n

Obs. There is an injection Z — Aut(E) := Hom(E, E)
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Dual Isogeny |

Let E, E> be elliptic curves on K and ¢ : E4 — FE5 an non constant
isogeny.

Definition

Define ¢* as the morphism of abelian groups that acts as follows on the
generators.

¢* : Pic®(Ey) — Pic®(Ey)
@~ Y. er(®)(R)

Rep~1(Q)

Obs. With ¢* we can define a related map qg: Ey — Ey.
Claim. This map is an isogeny
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Dual Isogeny Il

Let Fq, Eo, E5 be elliptic curves on K and ¢, : E1 — E5 and
0 : E5 — Ej3 isogenies.

Proposition (Silverman, 111.6.2)
= ¢ 0 ¢ = [deg ¢]

Corollary

—~

1. Using 2, inductively on m, [m] = [m]

2. Using 1, [m] o [;)-’L\] = [deg[m]] = [m?] = deg[m] = m?
3. By multiplicativity of degrees, [m] o ¢ = [0
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Part 3

The Torsion subgroup
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Torsion points of order m

Let /K be an elliptic curve.

Definition (Subgroup of torsion points of order m)

We define E[m] :=ker[m] = {P € E | [m]P = O}, which is a subgroup
of E.

Objective. We will find the cyclic decomposition of E[m]| Vm € Z. This
will enable the explicit computation of the Tate Module.

Recall. This groups were the main component in the definition of the

Tate Module
T(E) = lim E[I"]

n
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Torsion points of order m |l

Let E//K be an elliptic curve.

Proposition
For any m € Z,m > 2 such that if charK > 0, charK fm, we have
E[m] ~ (Z/mZ) x (Z/mZ).

Sketch of proof
1. Prove |E[m]| = m?
2. Prove that an abelian group of order m? and such that for every d|m
contains a subgroup E[d] C E[m] of order d? implies
G =Z/mZ x Z]mZ.
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Proof of E{m| ~ Z/mZ x Z/mZ

Recall. If C,Cy are curves, ¢ : C; — Cy a morphism of curves
o Define ep(¢) = ordp(¢*ty(py) the index of ramification of ¢ at P
@ Only finitely many P ramify, have ep(¢) > 1

@ Proposition. ZRdrl(Q) er(¢) = deg ¢

Then, proof goes as follows
@ [m] is not ramified.
o Hence |Efm]| = |ker[m]| = [[m]~}(0)] = deglm] = m?.
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Galois Structure on E[m]

E[m] has more structure, given by the action of the Galois Group of K /K
Proposition (Galois action on E[m))

The absolute Galois group Gz acts on E[m] with

Gk x Elm] — E[m]
(o,P) — P?

This is well defined, [m](P?) = ([m](P))° = O° = O, as O € P%

Obs. E[m] ~7Z/mZ x Z/mZ is a Z/mZ-module.

Obs. This gives a representation of charp,, =m > 0

pm : G i — Aut(E[m]) ~ GLa(Z/miZ)
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Part 4

The Tate Module



Inverse System

All rings in this talk are commutative and unitary.

Comment. This definition can be given categorically. | restricted to the
category of rings for simplicity.

Definition (Inverse System)

An inverse (or projective) system is a sequence of rings (R;);>o together
with a family of morphisms p; ; : R; — R; Vi > j such that Yk with
1<k<j

Pij = Pik © Pk,j

RO\ Rl\ Lol X RTL<

pLe \/

Pn,1

Pn,0
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Inverse Limit

Definition (Inverse Limit)

The inverse (or projective) limit of a inverse system is

@Rz = {(.To,xl,. o ) | x; € R; and V_] < i,pij(l’i) = xj}

Prop. It is a sub-ring of the product ring, with x and + working
cell-per-cell.
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The p-adic integers Z,

Obs. Let R; =Z/p'Z and p; j : Z/p'Z — Z/p’Z be the usual quotient
map. Then, we denote Z, = I&nn Z/p"Z the set of p-adic integer
numbers.

2 p
Z/pZ(WZ/pZ cee % Z)p"l +—— ...

\_/

Pn,1

Pn,0
Obs. Z, can be seen as infinite 'base’ expressions at p
ag + arp + azp”® + - -

with a; € Z/pZ.
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Definition

Definition (Tate Module)

Let E/K be an elliptic curve over a field K and | € Z a prime. The l-adic
Tate Module is

T(E) = lim E[I"]

Obs. There is a projective system (E[I"]),>0 with maps E[I" 1] 1, E[l"]
for all n > 1.

E[l] +— E[I?] <

0 \/ E[l"] +—— ...
Pn,1
Pn,0

Recall. T)(E) = {(P1, Py,...) | P; € E[l']| and [l]Piy1 = P;}
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Basic Properties

Proposition

1. Ti(E) is a Zy-module with a scalar product

Ly xT(E) = Ti(E)
((a:), (7)) = ([ai] )
2. Ifl is a prime not equal to charK,
TiI(E) ~7Z; x Z
is an isomorphism of Z;-modules.
3. There is an action
Gg/x x Ti(E) = Ti(E)
(0, (Pr)nz0) = (B )nz0
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Associated Representation

The action of G on T;(E) gives an l-adic representation.

Definition (Representation associated to the [-Tate Module)

We can define a representation
p: GF/K — Aut(Tl(E)) ~ GLQ(Zl) = GLQ(Ql)

Obs.

1. The isomorphism in the definition is not canonical. There is a2 more
canonical way to find a representation.

2. The representation above has characteristic 0, which was one of our
aims.
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Usecase. Studying Isogenies

Let F; and Es be elliptic curves on K and ¢ : £ — FEs an isogeny.

Obs. ¢ induces a map ¢y, : E1[l"] — Ex[l"] as Z/I"Z-modules. In turn,

these induce a map ¢ : Tj)(E1) — T;(E2) as Z;-modules.

Theorem
Let | # char(K') a prime. Then, the natural map of Z;-modules

Hom(Eh, Eq) ®z Z; — Homgz, (T;(E4), T1(Es2))
pRcrrc-@

is injective.
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Motivating Example Solved

Corollary

Let £y and Ey be elliptic curves on K. Then Hom(E1, Es) is a free
Z-module or rank at most 4.

Proof.

e Hom(E}, E3) is torsion-free over Z PID = Hom(E1, E») free.

e rankz(Hom(E1, E3)) = rankz, (Hom(E1, E2) ®z Z;) <
rankz, (Hom(T;(E1), Ti(E2)))

e Hom(T;(Eh),Ti(E2)) = Ma(Z;), which has rank 4.
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Generalization to Schemes

Important note. My knowledge on Scheme Theory is very limited. This
slide is just commentary.

Obs. Some of the objects and theorems we studied have an analogue in
the Theory of Number Fields. Here is an approximate correspondance.

Algebraic Varieties/Curves Theory of Number Fields
points prime ideals
variety spectrum
Pic’(E) Class group CI(K)
Covers and automorphisms of covers | Extensions and Galois groups
Ramification theory Hilbert Ramification theory

Comment. The theory of schemes seems to unify this two worlds, which
will both be examples of schemes.

Comment. Similarly, one can generalize the properties of an Elliptic curve
to a class of schemes with a suitable group structure, called Abelian
Varieties.
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Thank you for your attention

jlopezcontreras10@gmail.com
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Extra Slides



Affine Algebraic Varieties

Objective. Define everything intrinsically, without appealing to any
topological structure on K. We forget the usual definition of a curve.

Definition (Affine Algebraic Variety)

An affine algebraic variety over a field K is the set of zeros V' C A%~ K"
of a prime ideal p C K[x1,..., )], for somen > 1.

The condition of p prime ensures that the set of zeros is 'irreducible’.

Definition (Coordinate Ring)

Is the set of polynomial functions from V' — K quotiented by the
equivalent relation of having equal images for all the points on V. Hence
K[V] = Klz1,...,2,)/p
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Projective Algebraic Varieties

Definition (Projective Algebraic Variety)

An n-th dimensional projective algebraic variety over a field K is the set of
zeros V' C IP%- of a homogeneus prime ideal p C Klzo,x1,...,2p].

A homogeneus ideal is an ideal generated by homogeneus polynomials.
Non-homogeneus polynomials don’t define a function p : P* — P"

Let V be an algebraic projective variety and Vi = V N A™ any affinization.
Definition (Dimension)

The dimension of V' is the transcendence degree K (V) := Frac(K[Vasf])
over K.
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Non-singular and Genus

Comment. In an algebraic curve over K = C, there are two notions of
the topological/differential added structure that appear naturally.

1. A point P € V is non-singular if it has a unique tangent.

2. The genus of V is just the topological genus of the curve as a
Riemann Surface.

These definitions a priori are not intrinsical, they depend on structure of
the base field.

One can give equivalent definitions in a purely algebraic setting.
Comment. This strive of defining properties intrinsically is one of the

motivations for the development of the Theory of Schemes, where one can
give a general definition of an algebraic variety.
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Ramification

Let ¢ : C1 — C2 a non constant map of curves and P € (. Denote tg a

uniformizer element on Q.

Definition (Ramification index)
Define e4(P) = ordp(¢*ts(p))

Theorem
ZPeqs—l ep(P) = deg(¢)
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