Artin's conjecture on primes with prescribed primitive roots

Javier López-Contreras

Supervised by Sug Woo Shin

April 29, 2023

Objective

Conjecture (Artin's Conjecture)

Given $a \in \mathbb{Z}$, $a \notin \{-1, 0, 1\} \cup \{k^2 \mid k \in \mathbb{Z}_{>1}\})$, there are infinitely many primes p such that a is a primitive root in $(\mathbb{Z}/p\mathbb{Z})^*$.

- Rows: $a \in \mathbb{Z}$, increasing from top to bottom.
- Columns: primes p, increasing from left to right.
- A cell is white if a is a primitive root $\mod p$

History

- 1927. Emil Artin proposes a precise density conjecture.
- 1937. Herbert Bilharz solves the equivalent problem for $\mathbb{F}_q[x]$.
- 1957. Emma and Derrick H. Lehmer observe that the conjectured density is incorrect.
- 1967. Christopher Hooley proves AC under GRH.
- 1983. Rajiv Gupta and Ram Murty give a set of 13 integers such that at least one of them follows AC.
- 1985. Heath-Brown improves their argument to $\{2, 3, 5\}$.

History

1927. Emil Artin proposes a precise density conjecture.

- **1937.** Herbert Bilharz solves the equivalent problem for $\mathbb{F}_q[x]$.
- **1957.** Emma and Derrick H. Lehmer observe that the conjectured density is incorrect.
- 1967. Christopher Hooley proves AC under GRH.
- **1983.** Rajiv Gupta and Ram Murty give a set of 13 integers such that at least one of them follows AC.
- **1985.** Heath-Brown improves their argument to $\{2, 3, 5\}$.

Part 1

Artin's Observation

A precise conjectured density

Artin's Observation

Conjecture (Artin's conjectured density)

Given a non-square integer $a \in \mathbb{Z}_{>1} \setminus \mathbb{Z}^2$, the density of primes where a is a primitive root is

$$A(a) = \delta(a) \prod_{l \text{ prime}} \left(1 - \frac{1}{l(l-1)}\right) \approx 0.3739558 \dots \delta(a)$$

where $\delta(a)$ is an explicit correction factor that is 1 for most a.

Without loosing much flavor, we may assume a = 2, which makes $\delta(a) = 1$.

Key Lemma

Observation

a is a primitive root mod p if and only if there isn't any $l \in \mathbb{Z}$ prime such that

(1)
$$l \mid p-1$$
 and (2) $a^{\frac{p-1}{l}} = 1 \mod p$

• Given (1), (2) $\iff x^l = a \mod p$ has a solution

Lemma (Key Lemma)

A prime *l* follows the conditions (1) and (2) for p > 2 if and only if *p* is completely split over $\mathbb{Q}(\zeta_l, a^{1/l}) = \mathsf{SplField}_{\mathbb{Q}}(x^l - a)$.

• By Chebotarev's Density Theorem, they have density $\frac{1}{\left[\mathbb{Q}(\zeta_l, a^{1/l}):\mathbb{Q}\right]}$

Inclusion-Exclusion

Let k be square-free positive integer.

Theorem (Artin's observation)

The density of primes for which there is no $l \mid k$ following the conditions (1) and (2) is

$$A_k(a) = \sum_{d|k} \frac{\mu(d)}{\left[\mathbb{Q}(\zeta_d, a^{1/d}) : \mathbb{Q}\right]}$$

where μ is the Möebius Inversion function.

• Conjecture:

$$\lim_{k \text{ primordial}} A_k(a) = A(a)$$

• This passing to limit is where the difficulty lies.

Computation of the degree

Lemma

For
$$a = 2$$
, $[\mathbb{Q}(\zeta_k, a^{1/k}) : \mathbb{Q}] = \varphi(k)k$.

This is where Artin's original statement was incorrect for some values of a.

Summing up: Artin's Observation

- Encode l being a witness as a splitting condition over $\mathbb{Q}(\zeta_l, a^{1/l})$
- Chebotarev's Density Theorem
- Inclusion-Exclusion
- Conjectured passing to the limit

Part 2

Hooley's Theorem

The Riemann Hypothesis solves the problem

Hooley's Theorem

Theorem (Hooley, 1967)

The Generalized Riemann Hypothesis over the Number Fields $\mathbb{Q}(\zeta_k, a^{1/k})$ imply Artin's Conjecture about the density of primes with a prescribed primitive root at $a \in \mathbb{Z}_{>1} \setminus \mathbb{Z}^2$.

Sketch of the proof

- Sieve primes by intervals
- Reduce to the problem of counting prime ideals with bounded norm
- Result on vertical distribution of Riemann Zeroes under GRH

Hooley's Sieve

Definition (Prime counting functions)

1.
$$N_a(x) = \#\{p < x \mid a \text{ is a p.r. mod } p\}$$

2. $N_a(x,\xi) = \#\{p < x \mid \not\exists q \text{ following (1 & 2) in the range } q < \xi\}$
3. $M_a(x,\xi_1,\xi_2) = \{p < x \mid \exists q \text{ following (1 & 2) in the range } \xi_1 < q \le \xi_2\}$

Lemma

Let
$$\xi_1 = \frac{1}{6} \log x, \xi_2 = x^{1/2} \log^{-2} x, \xi_3 = x^{1/2} \log x$$
, then

$$N_a(x) = \underbrace{N_a(x,\xi_1)}_{\sim A(a) \frac{x}{\log x}} + \underbrace{O(M_a(x,\xi_1,\xi_2))}_{\preccurlyeq \frac{x}{(\log x)^2}} + \underbrace{O(M_a(x,\xi_2,\xi_3))}_{\preccurlyeq \frac{x}{(\log x)^2}} + \underbrace{O(M_a(x,\xi_3,x-1))}_{\preccurlyeq \frac{x}{(\log x)^2}} + \underbrace{O(M_a(x,\xi_3,x-1))}_{\end{cases} + \underbrace{O(M_a(x,\xi_3,x-1))}_{\end{cases}} + \underbrace{O(M_a(x,\xi_3,x-1))}_{\end{cases} + \underbrace{O(M_a(x,\xi_3,x-1))}_{\end{cases}} + \underbrace{O(M_a(x,\xi_3,x-1))}_{\end{cases} + \underbrace{O(M_a(x,\xi_3,x-1))}_{\end{cases}} + \underbrace{O(M_a(x,\xi_3,x-1))}_{\end{cases} + \underbrace{O(M_a(x,\xi_3,x-1))}_{} + \underbrace{O(M_a(x,$$

For most p where a is not a primitive root, a is an l-th residue for l small.

Reduction to counting primes

Definition (Prime counting function)

For $k \in \mathbb{Z}_{>0}^{\text{square-free}}$, let $L_k = \mathbb{Q}(\sqrt[k]{a}, \zeta_k)$ and $n(k) = [L_k : \mathbb{Q}]$. Then, define

$$\pi(x,k) := \#\{\mathfrak{p} \text{ prime ideal of } L_k \mid \mathcal{N}\mathfrak{p} \le x\}$$

Almost all prime ideals come from totally split primes in $\mathbb Q$

Lemma

Then,

$$n(k)P_{a}(x,k) \le \pi(x,k) \le n(k)P_{a}(x,k) + \underbrace{n(k)w(k)}_{e_{p}>1} + \underbrace{n(k)x^{1/2}}_{f_{p}>1}$$

where w(k) is the number of unique prime factors of k.

•
$$L_k$$
 is Galois $\implies p\mathcal{O}_{L_k} = \mathfrak{p}_1^{e_p} \dots \mathfrak{p}_{g_p}^{e_p}$ with $f_p = [\mathcal{O}_{L_k}/\mathfrak{p}_i : \mathbb{F}_p]$
• $\mathcal{N}(\mathfrak{p}_i) = p^{f_p} \le x \implies p \le x^{1/f_p}$

Effective prime counting estimate

Theorem (Main Theorem)

Assuming the Generalized Riemann Hypothesis for $\zeta_{L_k}(z)$, we have the estimate

$$\pi(x,k) = \frac{x}{\log x} + O(n(k)x^{1/2}\log(kx))$$

- $\pi(x,k)$ can be computed from the Riemann Zeroes
- Result about the vertical distribution of Riemann Zeroes under GRH.

Summing up: Hooley's Theorem

Key ideas

- For most p where a is not a primitive root, a is an l-th residue for l small \implies Sieve
- \bullet Primes that come from unramified rational primes are dense \implies Prime counting

Final Cannon

• Prime counting under GRH

Thank you for your attention

jlopezcontreras10@gmail.com

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH Centre de Formació Interdisciplinària Superior

Annex

Extra Slides

Motivation. Disquisitiones Arithmeticae 314-317

Why does the decimal expression of $\frac{3}{7}$ have a period of length 6, while the expression of $\frac{1}{11}$ has a shorter period, of only 2 digits?

$$\frac{3}{7} = 0.428571\ 428571\ 428571\ \dots \qquad \frac{1}{11} = 0.09\ 09\ 09\ \dots$$

Remark

For p a prime and $a \in \mathbb{Z} \cap [1, p-1]$, the length of the decimal period of $\frac{a}{p}$ is $\operatorname{ord}_{(\mathbb{Z}/p\mathbb{Z})^{\times}}(10)$.

$$\frac{a}{p} = \left(\frac{a_1}{10} + \dots + \frac{a_s}{10^s}\right) \left(1 + \frac{1}{10^s} + \dots\right) = \left(10^{s-1}a_1 + \dots + a_s\right) \frac{1}{10^s - 1}$$
$$a(10^s - 1) = Mp \implies 10^s = 1 \mod p$$

Motivation II. Disquisitiones Arithmeticae 314-317

Remark

Given $a, b \in \mathbb{Z} \cap [1, p-1]$ such that $b = 10^{\lambda} a \mod p$ for some λ , then period of $\frac{b}{p}$ is a cyclic translation of the period of $\frac{a}{p}$.

$$b_i = \left\lfloor \frac{10^i b}{p} \right\rfloor \mod 10 = \left\lfloor \frac{10^i (10^\lambda a + Np)}{p} \right\rfloor \mod 10 = a_{i+\lambda}$$

Question

For which primes p are the periods of $\frac{a}{p}$ all translations of the period of $\frac{1}{p}$?

This is tantamount to asking for which primes is 10 a primitive root.

Gauss' Party Trick

$\frac{1}{7}$	0.142857	142857	
$\frac{2}{7}$	0.2857	142857	
$\frac{3}{7}$	0.42857	142857	
$\frac{4}{7}$	0.57	142857	
$\frac{5}{7}$	0.7	142857	
$\frac{6}{7}$	0.857	142857	

Background I. Number Fields

A Number Field K is a finite field extension of \mathbb{Q} .

Given a Number Field, one can define its ring of integers \mathcal{O}_K , which is a generalization of $\mathbb{Z} \subseteq \mathbb{Q}$.

In these rings, factorization of ideals as a product of prime ideals is unique.

Definition (Completely split prime)

A prime p is called completely split over K if $\mathfrak{p}_i \neq \mathfrak{p}_j$ for $i \neq j$ and the residue fields $(\mathcal{O}_K/\mathfrak{p}_i) \simeq \mathbb{F}_p$

Background. Dirichlet's Density

Inspired by Dirichlet's theorem about primes in arithmetic progressions.

Good number theoretical density because it can often be related with special values of L-functions.

Background III. Chebotarev's Theorem

Theorem (Chebotarev's Density Theorem. Simplified Version)

Let K/\mathbb{Q} be a finite Galois extension. The Dirichlet Density of the set S of primes $\mathfrak{p} \subseteq \mathbb{Q}$ that are totally split over K is

$$\delta(S) = \frac{1}{[K:\mathbb{Q}]}$$

For example, when $K = \mathbb{Q}(\zeta_n)$ a prime splits completely if and only if $p = 1 \mod n$. They have density $\frac{1}{\varphi(n)}$.

Artin's Observation III. Chebotarev's theorem

Let k be square-free positive integer.

Lemma

All the primes $l \mid k$ follow the conditions (1) and (2) for p > 2 if and only if p is completely split over L_k/\mathbb{Q} , where $L_k = \prod_{l \mid k} L_l = \mathbb{Q}(\zeta_k, a^{1/k})$.

Chebotarev's theorem yields that the density of

 $\{p \mid p > 2 \text{ prime such that } \forall l \mid k \text{ conditions (1) and (2) are met} \}$

is $\frac{1}{[L_k:\mathbb{Q}]}$.

Hooley's Theorem II. Prime counting functions

Definition (Prime counting functions)

Lemma (Artin's Observation)

$$N_a(x,\xi) = \sum_{l'} \mu(l') P_a(x,l')$$

as l' goes over square-free integers with all prime factors $\leq \xi$.

Estimation of term 1

Lemma (Estimation of the 1st term)

$$N_{a}(x,\xi_{1}) = \sum_{l'} \mu(l') \left(\frac{x}{\log x \cdot n(l')} + O(x^{f} \log x) \right) =$$

$$= \frac{x}{l' < e^{2\xi_{1}}} \frac{x}{\log x} \sum_{l'} \frac{\mu(l')}{n(l')} + O\left(\sum_{l < e^{2\xi_{1}}} x^{f} \log x \right) =$$

$$= A(a) \frac{x}{\log x} + O(e^{2\xi_{1}} x^{f} \log x) =$$

$$= A(a) \frac{x}{\log x} + O(x^{f+1/3} \log x)$$

Bound of term 2

Lemma (Bound of the 2nd term)

$$M_a(x,\xi_2,\xi_3) \le \sum_{\xi_1 < q \le \xi_2} \left(\frac{x}{\log x \cdot q(q-1)} + O(x^f \log x) \right) =$$
$$= O\left(\frac{x}{\log x} \sum_{q > \xi_2} \frac{1}{q^2} \right) + O\left(x^f \log x \sum_{q \le \xi_2} 1 \right) =$$
$$= O\left(\frac{x}{\xi_1 \log x} \right) + O\left(\frac{x^f \xi_2 \log x}{\log \xi_2} \right) = O\left(\frac{x}{\log^2 x} \right)$$

Bound of term 3

Lemma (Bound of the 3rd term)

Let
$$\xi_2 = x^{1/2} \log^{-2} x$$
 and $\xi_3 = x^{1/2} \log x$. Then
 $M_a(x, \xi_2, \xi_3) = O\left(\frac{x}{\log^2 x}\right).$

In particular $p \equiv 1 \mod q$. By Brun's method, which is an inequality related to Dirichlet's Theorem, we have

$$P_a(x,q) \le \sum_{\substack{p \le x \\ p \equiv 1 \mod q}} 1 \le \frac{A_1 x}{(q-1)\log(x/q)}$$
$$M_a(x,\xi_2,\xi_3) = O\left(\frac{x}{\log x} \sum_{\xi_2 < q \le \xi_3} \frac{1}{q}\right) = O\left(\frac{x}{\log^2 x} \left(\log \frac{\xi_3}{\xi_2} + O(1)\right)\right) = O\left(\frac{x\log\log x}{\log^2 x}\right)$$

A

30 / 18

Bound of term 4

Lemma (Bound of the 4th term)

Let $\xi_3 = x^{1/2} \log x$, then

$$M_a(x,\xi_3,x-1) = O\left(\frac{x}{\log^2 x}\right)$$
(2)

In particular $a^{\frac{p-1}{q}} = 1 \mod p$. Hence, if there is a $q > \xi_3$ that follows the Lemma, there will be an $m < \frac{x}{\xi_3}$ such that $p|a^m - 1$. All the primes counted on $M_a(x,\xi_3,x-1)$ need to be divisors of

$$S_a(x/\xi_3) := \prod_{m < x/\xi_3} (a^m - 1)$$