
Artin’s conjecture on primes
with prescribed primitive roots

Javier López-Contreras

Supervised by Sug Woo Shin

April 29, 2023

1 / 18



Objective

Conjecture (Artin’s Conjecture)

Given a ∈ Z, a ̸∈ {−1, 0, 1} ∪ {k2 | k ∈ Z>1}), there are infinitely many
primes p such that a is a primitive root in (Z/pZ)∗.

Rows: a ∈ Z, increasing from top to bottom.

Columns: primes p, increasing from left to right.

A cell is white if a is a primitive root mod p
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History

1927. Emil Artin proposes a precise density conjecture.

1937. Herbert Bilharz solves the equivalent problem for
Fq[x].

1957. Emma and Derrick H. Lehmer observe that the
conjectured density is incorrect.

1967. Christopher Hooley proves AC under GRH.

1983. Rajiv Gupta and Ram Murty give a set of 13
integers such that at least one of them follows AC.

1985. Heath-Brown improves their argument to {2, 3, 5}.
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Part 1

Artin’s Observation

A precise conjectured density
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Artin’s Observation

Conjecture (Artin’s conjectured density)

Given a non-square integer a ∈ Z>1 \ Z2, the density of primes where a is
a primitive root is

A(a) = δ(a)
∏

l prime

(
1− 1

l(l − 1)

)
≈ 0.3739558 . . . · δ(a)

where δ(a) is an explicit correction factor that is 1 for most a.

Without loosing much flavor, we may assume a = 2, which makes
δ(a) = 1.
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Key Lemma

Observation

a is a primitive root mod p if and only if there isn’t any l ∈ Z prime such
that

(1) l | p− 1 and (2) a
p−1
l = 1 mod p

Given (1), (2) ⇐⇒ xl = a mod p has a solution

Lemma (Key Lemma)

A prime l follows the conditions (1) and (2) for p > 2 if and only if p is
completely split over Q(ζl, a

1/l) = SplFieldQ(x
l − a).

By Chebotarev’s Density Theorem, they have density 1
[Q(ζl,a1/l):Q]
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Inclusion-Exclusion

Let k be square-free positive integer.

Theorem (Artin’s observation)

The density of primes for which there is no l | k following the conditions
(1) and (2) is

Ak(a) =
∑
d|k

µ(d)

[Q(ζd, a1/d) : Q]

where µ is the Möebius Inversion function.

Conjecture:
lim

k primordial
Ak(a) = A(a)

This passing to limit is where the difficulty lies.
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Computation of the degree

Lemma

For a = 2, [Q(ζk, a
1/k) : Q] = φ(k)k.

This is where Artin’s original statement was incorrect for some values of a.

Lk = Q(ζk, k
√
a)

Ck = Q(ζk) Rk = Q( k
√
a)

Ik = Q(ζk) ∩Q( k
√
a)

Q

φ(k) k
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Summing up: Artin’s Observation

Encode l being a witness as a splitting condition over Q(ζl, a
1/l)

Chebotarev’s Density Theorem

Inclusion-Exclusion

Conjectured passing to the limit
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Part 2

Hooley’s Theorem

The Riemann Hypothesis solves the problem
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Hooley’s Theorem

Theorem (Hooley, 1967)

The Generalized Riemann Hypothesis over the Number Fields Q(ζk, a
1/k)

imply Artin’s Conjecture about the density of primes with a prescribed
primitive root at a ∈ Z>1 \ Z2.

Sketch of the proof

Sieve primes by intervals

Reduce to the problem of counting prime ideals with bounded norm

Result on vertical distribution of Riemann Zeroes under GRH
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Hooley’s Sieve

Definition (Prime counting functions)

1. Na(x) = #{p < x | a is a p.r. mod p}
2. Na(x, ξ) = #{p < x | ̸ ∃ q following (1 & 2) in the range q < ξ}
3. Ma(x, ξ1, ξ2) =

= {p < x | ∃ q following (1 & 2) in the range ξ1 < q ≤ ξ2}

Lemma

Let ξ1 =
1
6 log x, ξ2 = x1/2 log−2 x, ξ3 = x1/2 log x, then

Na(x) = Na(x, ξ1)︸ ︷︷ ︸
∼A(a) x

log x

+O(Ma(x, ξ1, ξ2))︸ ︷︷ ︸
≼ x

(log x)2

+O(Ma(x, ξ2, ξ3))︸ ︷︷ ︸
≼ x log log x

(log x)2

+O(Ma(x, ξ3, x− 1))︸ ︷︷ ︸
≼ x

(log x)2

13 / 18



For most p where a is not a primitive root, a is an l-th residue for l small.
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Reduction to counting primes

Definition (Prime counting function)

For k ∈ Zsquare-free
>0 , let Lk = Q( k

√
a, ζk) and n(k) = [Lk : Q]. Then, define

π(x, k) := #{p prime ideal of Lk | Np ≤ x}

Almost all prime ideals come from totally split primes in Q

Lemma

Then,

n(k)Pa(x, k) ≤ π(x, k) ≤ n(k)Pa(x, k) + n(k)w(k)︸ ︷︷ ︸
ep>1

+n(k)x1/2︸ ︷︷ ︸
fp>1

where w(k) is the number of unique prime factors of k.

Lk is Galois =⇒ pOLk
= p

ep
1 . . . p

ep
gp with fp = [OLk

/pi : Fp]

N (pi) = pfp ≤ x =⇒ p ≤ x1/fp
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Effective prime counting estimate

Theorem (Main Theorem)

Assuming the Generalized Riemann Hypothesis for ζLk
(z), we have the

estimate
π(x, k) =

x

log x
+O(n(k)x1/2 log(kx))

π(x, k) can be computed from the Riemann Zeroes

Result about the vertical distribution of Riemann Zeroes under GRH.
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Summing up: Hooley’s Theorem

Key ideas

For most p where a is not a primitive root, a is an l-th residue for l
small =⇒ Sieve

Primes that come from unramified rational primes are dense =⇒
Prime counting

Final Cannon

Prime counting under GRH
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Thank you for your attention

jlopezcontreras10@gmail.com
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Annex

Extra Slides
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Motivation. Disquisitiones Arithmeticae 314-317

Why does the decimal expression of 3
7 have a period of length 6, while the

expression of 1
11 has a shorter period, of only 2 digits?

3

7
= 0.428571 428571 428571 . . .

1

11
= 0.09 09 09 . . .

Remark

For p a prime and a ∈ Z ∩ [1, p− 1], the length of the decimal period of a
p

is ord(Z/pZ)×(10).

a

p
=

(a1
10

+ · · ·+ as
10s

)(
1 +

1

10s
+ · · ·

)
=

(
10s−1a1 + · · ·+ as

) 1

10s − 1

a(10s − 1) = Mp =⇒ 10s = 1 mod p
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Motivation II. Disquisitiones Arithmeticae 314-317

Remark

Given a, b ∈ Z ∩ [1, p− 1] such that b = 10λa mod p for some λ, then
period of b

p is a cyclic translation of the period of a
p .

bi =

⌊
10ib

p

⌋
mod 10 =

⌊
10i(10λa+Np)

p

⌋
mod 10 = ai+λ

Question

For which primes p are the periods of a
p all translations of the period of 1

p?

This is tantamount to asking for which primes is 10 a primitive root.
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Gauss’ Party Trick

1
7 0.142857 142857 . . .

2
7 0.2857 142857 . . .

3
7 0.42857 142857 . . .

4
7 0.57 142857 . . .

5
7 0.7 142857 . . .

6
7 0.857 142857 . . .
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Background I. Number Fields

A Number Field K is a finite field extension of Q.

Given a Number Field, one can define its ring of integers OK , which is a
generalization of Z ⊆ Q.

K OK pOK = p1 . . . pn

Q Z p

In these rings, factorization of ideals as a product of prime ideals is unique.

Definition (Completely split prime)

A prime p is called completely split over K if pi ̸= pj for i ̸= j and the
residue fields (OK/pi) ≃ Fp
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Background. Dirichlet’s Density

Inspired by Dirichlet’s theorem about primes in arithmetic progressions.∑
p=an+b prime

1

p

Definition (Dirichlet’s Density)

For S ⊆ SpecOK , define

δ(S) = lim
s→1

∑
p∈S

1
(Np)s∑

p∈SpecOK

1
(Np)s

(1)

Good number theoretical density because it can often be related with
special values of L-functions.
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Background III. Chebotarev’s Theorem

Theorem (Chebotarev’s Density Theorem. Simplified Version)

Let K/Q be a finite Galois extension. The Dirichlet Density of the set S
of primes p ⊆ Q that are totally split over K is

δ(S) =
1

[K : Q]

For example, when K = Q(ζn) a prime splits completely if and only if
p = 1 mod n. They have density 1

φ(n) .
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Artin’s Observation III. Chebotarev’s theorem

Let k be square-free positive integer.

Lemma

All the primes l | k follow the conditions (1) and (2) for p > 2 if and only
if p is completely split over Lk/Q, where Lk =

∏
l|k Ll = Q(ζk, a

1/k).

Chebotarev’s theorem yields that the density of

{p | p > 2 prime such that ∀l | k conditions (1) and (2) are met}

is 1
[Lk:Q] .
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Hooley’s Theorem II. Prime counting functions

Definition (Prime counting functions)

1. Na(x) = #{p < x | a is a p.r. mod p}
2. Pa(x, k) = #{p < x | ∀q | k, q follows (1 & 2)}
3. Na(x, ξ) = #{p < x | ̸ ∃ q following (1 & 2) in the range q < ξ}
4. Ma(x, ξ1, ξ2) =

= {p < x | ∃ q following (1 & 2) in the range ξ1 < q ≤ ξ}

Lemma (Artin’s Observation)

Na(x, ξ) =
∑
l′

µ(l′)Pa(x, l
′)

as l′ goes over square-free integers with all prime factors ≤ ξ.

27 / 18



Estimation of term 1

Lemma (Estimation of the 1st term)

Na(x, ξ1) =
∑
l′

µ(l′)

(
x

log x · n(l′)
+O(xf log x)

)
=

=
l′<e2ξ1

x

log x

∑
l′

µ(l′)

n(l′)
+O

 ∑
l<e2ξ1

xf log x

 =

= A(a)
x

log x
+O(e2ξ1xf log x) =

= A(a)
x

log x
+O(xf+1/3 log x)
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Bound of term 2

Lemma (Bound of the 2nd term)

Ma(x, ξ2, ξ3) ≤
∑

ξ1<q≤ξ2

(
x

log x · q(q − 1)
+O(xf log x)

)
=

= O

 x

log x

∑
q>ξ2

1

q2

+O

xf log x
∑
q≤ξ2

1

 =

= O

(
x

ξ1 log x

)
+O

(
xfξ2 log x

log ξ2

)
= O

(
x

log2 x

)
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Bound of term 3

Lemma (Bound of the 3rd term)

Let ξ2 = x1/2 log−2 x and ξ3 = x1/2 log x. Then

Ma(x, ξ2, ξ3) = O
(

x
log2 x

)
.

In particular p ≡ 1 mod q. By Brun’s method, which is an inequality
related to Dirichlet’s Theorem, we have

Pa(x, q) ≤
∑
p≤x

p≡1 mod q

1 ≤ A1x

(q − 1) log(x/q)

Ma(x, ξ2, ξ3) = O

 x

log x

∑
ξ2<q≤ξ3

1

q

 =

= O

(
x

log2 x

(
log

ξ3
ξ2

+O(1)

))
= O

(
x log log x

log2 x

)
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Bound of term 4

Lemma (Bound of the 4th term)

Let ξ3 = x1/2 log x, then

Ma(x, ξ3, x− 1) = O

(
x

log2 x

)
(2)

In particular a
p−1
q = 1 mod p. Hence, if there is a q > ξ3 that follows the

Lemma, there will be an m < x
ξ3

such that p|am − 1. All the primes
counted on Ma(x, ξ3, x− 1) need to be divisors of

Sa(x/ξ3) :=
∏

m<x/ξ3

(am − 1)
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