Artin's conjecture on primes with prescribed primitive roots

Javier López-Contreras

Supervised by Sug Woo Shin

April 29, 2023

Objective

Conjecture (Artin's Conjecture)

Given $\left.a \in \mathbb{Z}, a \notin\{-1,0,1\} \cup\left\{k^{2} \mid k \in \mathbb{Z}_{>1}\right\}\right)$, there are infinitely many primes p such that a is a primitive root in $(\mathbb{Z} / p \mathbb{Z})^{*}$.

- Rows: $a \in \mathbb{Z}$, increasing from top to bottom.
- Columns: primes p, increasing from left to right.
- A cell is white if a is a primitive root $\bmod p$

History

1927. Emil Artin proposes a precise density conjecture.
1928. Herbert Bilharz solves the equivalent problem for $\mathbb{F}_{q}[x]$.
1929. Emma and Derrick H. Lehmer observe that the conjectured density is incorrect.
1930. Christopher Hooley proves AC under GRH.
1931. Rajiv Gupta and Ram Murty give a set of 13 integers such that at least one of them follows AC.
1932. Heath-Brown improves their argument to $\{2,3,5\}$.

History

1927. Emil Artin proposes a precise density conjecture. 1937. Herbert Bilharz solves the equivalent problem for $\mathbb{F}_{q}[x]$.
1928. Emma and Derrick H. Lehmer observe that the conjectured density is incorrect.
1929. Christopher Hooley proves AC under GRH.
1930. Rajiv Gupta and Ram Murty give a set of 13 integers such that at least one of them follows AC.
1931. Heath-Brown improves their argument to $\{2,3,5\}$.

Part 1

Artin's Observation

A precise conjectured density

Artin's Observation

Conjecture (Artin's conjectured density)

Given a non-square integer $a \in \mathbb{Z}_{>1} \backslash \mathbb{Z}^{2}$, the density of primes where a is a primitive root is

$$
A(a)=\delta(a) \prod_{l \text { prime }}\left(1-\frac{1}{l(l-1)}\right) \approx 0.3739558 \ldots \cdot \delta(a)
$$

where $\delta(a)$ is an explicit correction factor that is 1 for most a.

Without loosing much flavor, we may assume $a=2$, which makes $\delta(a)=1$.

Key Lemma

Observation

a is a primitive root $\bmod p$ if and only if there isn't any $l \in \mathbb{Z}$ prime such that

$$
\text { (1) } l \mid p-1 \quad \text { and } \quad \text { (2) } a^{\frac{p-1}{l}}=1 \bmod p
$$

- Given (1), (2) $\Longleftrightarrow x^{l}=a \bmod p$ has a solution

Lemma (Key Lemma)

A prime l follows the conditions (1) and (2) for $p>2$ if and only if p is completely split over $\mathbb{Q}\left(\zeta_{l}, a^{1 / l}\right)=$ SplField $_{\mathbb{Q}}\left(x^{l}-a\right)$.

- By Chebotarev's Density Theorem, they have density $\frac{1}{\left[\mathbb{Q}\left(\zeta_{l}, a^{1 / l}\right): \mathbb{Q}\right]}$

Inclusion-Exclusion

Let k be square-free positive integer.
Theorem (Artin's observation)
The density of primes for which there is no $l \mid k$ following the conditions (1) and (2) is

$$
A_{k}(a)=\sum_{d \mid k} \frac{\mu(d)}{\left[\mathbb{Q}\left(\zeta_{d}, a^{1 / d}\right): \mathbb{Q}\right]}
$$

where μ is the Möebius Inversion function.

- Conjecture:

$$
\lim _{k \text { primordial }} A_{k}(a)=A(a)
$$

- This passing to limit is where the difficulty lies.

Computation of the degree

Lemma

For $a=2,\left[\mathbb{Q}\left(\zeta_{k}, a^{1 / k}\right): \mathbb{Q}\right]=\varphi(k) k$.
This is where Artin's original statement was incorrect for some values of a.

Summing up: Artin's Observation

- Encode l being a witness as a splitting condition over $\mathbb{Q}\left(\zeta_{l}, a^{1 / l}\right)$
- Chebotarev's Density Theorem
- Inclusion-Exclusion
- Conjectured passing to the limit

Part 2

Hooley's Theorem

The Riemann Hypothesis solves the problem

Hooley's Theorem

Theorem (Hooley, 1967)

The Generalized Riemann Hypothesis over the Number Fields $\mathbb{Q}\left(\zeta_{k}, a^{1 / k}\right)$ imply Artin's Conjecture about the density of primes with a prescribed primitive root at $a \in \mathbb{Z}_{>1} \backslash \mathbb{Z}^{2}$.

Sketch of the proof

- Sieve primes by intervals
- Reduce to the problem of counting prime ideals with bounded norm
- Result on vertical distribution of Riemann Zeroes under GRH

Hooley's Sieve

Definition (Prime counting functions)

$$
\text { 1. } N_{a}(x)=\#\{p<x \mid a \text { is a p.r. } \bmod p\}
$$

2. $N_{a}(x, \xi)=\#\{p<x \mid \nexists q$ following (1\&2) in the range $q<\xi\}$
3. $M_{a}\left(x, \xi_{1}, \xi_{2}\right)=$

$$
=\left\{p<x \mid \exists q \text { following (1\&2) in the range } \xi_{1}<q \leq \xi_{2}\right\}
$$

Lemma

Let $\xi_{1}=\frac{1}{6} \log x, \xi_{2}=x^{1 / 2} \log ^{-2} x, \xi_{3}=x^{1 / 2} \log x$, then

$$
N_{a}(x)=\underbrace{N_{a}\left(x, \xi_{1}\right)}_{\sim A(a) \frac{x}{\log x}}+\underbrace{O\left(M_{a}\left(x, \xi_{1}, \xi_{2}\right)\right)}_{\preccurlyeq \frac{x}{(\log x)^{2}}}+\underbrace{O\left(M_{a}\left(x, \xi_{2}, \xi_{3}\right)\right)}_{\preccurlyeq \frac{x \log \log x}{(\log x)^{2}}}+\underbrace{O\left(M_{a}\left(x, \xi_{3}, x-1\right)\right)}_{\preccurlyeq \frac{x}{(\log x)^{2}}}
$$

For most p where a is not a primitive root, a is an l-th residue for l small.

Reduction to counting primes

Definition (Prime counting function)

For $k \in \mathbb{Z}_{>0}^{\text {square-free }}$, let $L_{k}=\mathbb{Q}\left(\sqrt[k]{a}, \zeta_{k}\right)$ and $n(k)=\left[L_{k}: \mathbb{Q}\right]$. Then, define

$$
\pi(x, k):=\#\left\{\mathfrak{p} \text { prime ideal of } L_{k} \mid \mathcal{N} \mathfrak{p} \leq x\right\}
$$

Almost all prime ideals come from totally split primes in \mathbb{Q}

Lemma

Then,

$$
n(k) P_{a}(x, k) \leq \pi(x, k) \leq n(k) P_{a}(x, k)+\underbrace{n(k) w(k)}_{e_{p}>1}+\underbrace{n(k) x^{1 / 2}}_{f_{p}>1}
$$

where $w(k)$ is the number of unique prime factors of k.

- L_{k} is Galois $\Longrightarrow p \mathcal{O}_{L_{k}}=\mathfrak{p}_{1}^{e_{p}} \ldots \mathfrak{p}_{g_{p}}^{e_{p}}$ with $f_{p}=\left[\mathcal{O}_{L_{k}} / \mathfrak{p}_{i}: \mathbb{F}_{p}\right]$
- $\mathcal{N}\left(\mathfrak{p}_{i}\right)=p^{f_{p}} \leq x \Longrightarrow p \leq x^{1 / f_{p}}$

Effective prime counting estimate

Theorem (Main Theorem)

Assuming the Generalized Riemann Hypothesis for $\zeta_{L_{k}}(z)$, we have the estimate

$$
\pi(x, k)=\frac{x}{\log x}+O\left(n(k) x^{1 / 2} \log (k x)\right)
$$

- $\pi(x, k)$ can be computed from the Riemann Zeroes
- Result about the vertical distribution of Riemann Zeroes under GRH.

Summing up: Hooley's Theorem

Key ideas

- For most p where a is not a primitive root, a is an l-th residue for l small \Longrightarrow Sieve
- Primes that come from unramified rational primes are dense \Longrightarrow Prime counting

Final Cannon

- Prime counting under GRH

Thank you for your attention

jlopezcontreras10@gmail.com

Centre de Formació Interdisciplinària Superior

UNIVERSITY OF CALIFORNIA

Annex

Extra Slides

Motivation. Disquisitiones Arithmeticae 314-317

Why does the decimal expression of $\frac{3}{7}$ have a period of length 6 , while the expression of $\frac{1}{11}$ has a shorter period, of only 2 digits?

$$
\frac{3}{7}=0.428571428571428571 \ldots \quad \frac{1}{11}=0.090909 \ldots
$$

Remark

For p a prime and $a \in \mathbb{Z} \cap[1, p-1]$, the length of the decimal period of $\frac{a}{p}$ is $\operatorname{ord}_{(\mathbb{Z} / p \mathbb{Z})} \times(10)$.

$$
\begin{gathered}
\frac{a}{p}=\left(\frac{a_{1}}{10}+\cdots+\frac{a_{s}}{10^{s}}\right)\left(1+\frac{1}{10^{s}}+\cdots\right)=\left(10^{s-1} a_{1}+\cdots+a_{s}\right) \frac{1}{10^{s}-1} \\
a\left(10^{s}-1\right)=M p \Longrightarrow 10^{s}=1 \bmod p
\end{gathered}
$$

Motivation II. Disquisitiones Arithmeticae 314-317

Remark

Given $a, b \in \mathbb{Z} \cap[1, p-1]$ such that $b=10^{\lambda} a \bmod p$ for some λ, then period of $\frac{b}{p}$ is a cyclic translation of the period of $\frac{a}{p}$.

$$
b_{i}=\left\lfloor\frac{10^{i} b}{p}\right\rfloor \bmod 10=\left\lfloor\frac{10^{i}\left(10^{\lambda} a+N p\right)}{p}\right\rfloor \quad \bmod 10=a_{i+\lambda}
$$

Question

For which primes p are the periods of $\frac{a}{p}$ all translations of period of $\frac{1}{p}$?
This is tantamount to asking for which primes is 10 a primitive root.

Gauss' Party Trick

$\frac{1}{7}$	0.142857	142857	\ldots
$\frac{2}{7}$	0.2857	142857	\ldots
$\frac{3}{7}$	0.42857	142857	\ldots
$\frac{4}{7}$	0.57	142857	\ldots
$\frac{5}{7}$	0.7	142857	\ldots
$\frac{6}{7}$	0.857	142857	\ldots

Background I. Number Fields

A Number Field K is a finite field extension of \mathbb{Q}.
Given a Number Field, one can define its ring of integers \mathcal{O}_{K}, which is a generalization of $\mathbb{Z} \subseteq \mathbb{Q}$.

In these rings, factorization of ideals as a product of prime ideals is unique.

Definition (Completely split prime)

A prime p is called completely split over K if $\mathfrak{p}_{i} \neq \mathfrak{p}_{j}$ for $i \neq j$ and the residue fields $\left(\mathcal{O}_{K} / \mathfrak{p}_{i}\right) \simeq \mathbb{F}_{p}$

Background. Dirichlet's Density

Inspired by Dirichlet's theorem about primes in arithmetic progressions.

$$
\sum_{p=a n+b \text { prime }} \frac{1}{p}
$$

Definition (Dirichlet's Density)

For $S \subseteq \operatorname{Spec} \mathcal{O}_{K}$, define

$$
\begin{equation*}
\delta(S)=\lim _{s \rightarrow 1} \frac{\sum_{\mathfrak{p} \in S} \frac{1}{(\mathcal{N} \mathfrak{p})^{s}}}{\sum_{\mathfrak{p} \in \operatorname{Spec}} \mathcal{O}_{K} \frac{1}{(\mathcal{N} \mathfrak{p})^{s}}} \tag{1}
\end{equation*}
$$

Good number theoretical density because it can often be related with special values of L-functions.

Background III. Chebotarev's Theorem

Theorem (Chebotarev's Density Theorem. Simplified Version)

Let K / \mathbb{Q} be a finite Galois extension. The Dirichlet Density of the set S of primes $\mathfrak{p} \subseteq \mathbb{Q}$ that are totally split over K is

$$
\delta(S)=\frac{1}{[K: \mathbb{Q}]}
$$

For example, when $K=\mathbb{Q}\left(\zeta_{n}\right)$ a prime splits completely if and only if $p=1 \bmod n$. They have density $\frac{1}{\varphi(n)}$.

Artin's Observation III. Chebotarev's theorem

Let k be square-free positive integer.

Lemma

All the primes $l \mid k$ follow the conditions (1) and (2) for $p>2$ if and only if p is completely split over L_{k} / \mathbb{Q}, where $L_{k}=\prod_{l \mid k} L_{l}=\mathbb{Q}\left(\zeta_{k}, a^{1 / k}\right)$.

Chebotarev's theorem yields that the density of

$$
\{p \mid p>2 \text { prime such that } \forall l \mid k \text { conditions (1) and (2) are met }\}
$$

is $\frac{1}{\left[L_{k}: \mathbb{Q}\right]}$.

Hooley's Theorem II. Prime counting functions

Definition (Prime counting functions)

$$
\text { 1. } N_{a}(x)=\#\{p<x \mid a \text { is a p.r. } \bmod p\}
$$

2. $P_{a}(x, k)=\#\{p<x|\forall q| k, q$ follows (1 \& 2) $\}$
3. $N_{a}(x, \xi)=\#\{p<x \mid \nexists q$ following (1 \& 2) in the range $q<\xi\}$
4. $M_{a}\left(x, \xi_{1}, \xi_{2}\right)=$
$=\left\{p<x \mid \exists q\right.$ following (1 \& 2) in the range $\left.\xi_{1}<q \leq \xi\right\}$
Lemma (Artin's Observation)

$$
N_{a}(x, \xi)=\sum_{l^{\prime}} \mu\left(l^{\prime}\right) P_{a}\left(x, l^{\prime}\right)
$$

as l^{\prime} goes over square-free integers with all prime factors $\leq \xi$.

Estimation of term 1

Lemma (Estimation of the 1st term)

$$
\begin{aligned}
N_{a}\left(x, \xi_{1}\right) & =\sum_{l^{\prime}} \mu\left(l^{\prime}\right)\left(\frac{x}{\log x \cdot n\left(l^{\prime}\right)}+O\left(x^{f} \log x\right)\right)= \\
& =\frac{x}{l^{\prime}<e^{2 \xi_{1}}} \frac{\mu}{\log x} \sum_{l^{\prime}} \frac{\mu\left(l^{\prime}\right)}{n\left(l^{\prime}\right)}+O\left(\sum_{l<e^{2 \xi_{1}}} x^{f} \log x\right)= \\
& =A(a) \frac{x}{\log x}+O\left(e^{2 \xi_{1}} x^{f} \log x\right)= \\
& =A(a) \frac{x}{\log x}+O\left(x^{f+1 / 3} \log x\right)
\end{aligned}
$$

Bound of term 2

Lemma (Bound of the 2nd term)

$$
\begin{aligned}
M_{a}\left(x, \xi_{2}, \xi_{3}\right) & \leq \sum_{\xi_{1}<q \leq \xi_{2}}\left(\frac{x}{\log x \cdot q(q-1)}+O\left(x^{f} \log x\right)\right)= \\
& =O\left(\frac{x}{\log x} \sum_{q>\xi_{2}} \frac{1}{q^{2}}\right)+O\left(x^{f} \log x \sum_{q \leq \xi_{2}} 1\right)= \\
& =O\left(\frac{x}{\xi_{1} \log x}\right)+O\left(\frac{x^{f} \xi_{2} \log x}{\log \xi_{2}}\right)=O\left(\frac{x}{\log ^{2} x}\right)
\end{aligned}
$$

Bound of term 3

Lemma (Bound of the 3rd term)

Let $\xi_{2}=x^{1 / 2} \log ^{-2} x$ and $\xi_{3}=x^{1 / 2} \log x$. Then $M_{a}\left(x, \xi_{2}, \xi_{3}\right)=O\left(\frac{x}{\log ^{2} x}\right)$.

In particular $p \equiv 1 \bmod q$. By Brun's method, which is an inequality related to Dirichlet's Theorem, we have

$$
\begin{gathered}
P_{a}(x, q) \leq \sum_{p \equiv 1} 1 \leq \frac{A_{1} x}{(q-1) \log (x / q)} \\
M_{a}\left(x, \xi_{2}, \xi_{3}\right)=O\left(\frac{x}{\log x} \sum_{\xi_{2}<q \leq \xi_{3}} \frac{1}{q}\right)= \\
=O\left(\frac{x}{\log ^{2} x}\left(\log \frac{\xi_{3}}{\xi_{2}}+O(1)\right)\right)=O\left(\frac{x \log \log x}{\log ^{2} x}\right)
\end{gathered}
$$

Bound of term 4

Lemma (Bound of the 4th term)

Let $\xi_{3}=x^{1 / 2} \log x$, then

$$
\begin{equation*}
M_{a}\left(x, \xi_{3}, x-1\right)=O\left(\frac{x}{\log ^{2} x}\right) \tag{2}
\end{equation*}
$$

In particular $a^{\frac{p-1}{q}}=1 \bmod p$. Hence, if there is a $q>\xi_{3}$ that follows the Lemma, there will be an $m<\frac{x}{\xi_{3}}$ such that $p \mid a^{m}-1$. All the primes counted on $M_{a}\left(x, \xi_{3}, x-1\right)$ need to be divisors of

$$
S_{a}\left(x / \xi_{3}\right):=\prod_{m<x / \xi_{3}}\left(a^{m}-1\right)
$$

